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CHAPTER 1 

INTRODUCTION 

Looking through the enormous literature about nonlinear economic time series, we find that there 

are basically two types of linearity tests: the general linearity tests and the specific linearity tests. 

Although both tests have the linear null, the general linearity tests do not specify the form of the 

alternative model, while the specific linearity tests do. The generality of the general linearity tests has 

made them a popular tool for preliminary investigation and diagnostic checking in time series analysis. 

However, the general linearity tests do not indicate what kind of nonlinear parametric form the series 

should follow if they reject the null. On the contrary, the specific linearity tests reject the null in favor 

of the alternative model, which is well specified. But this is built upon the strong assumption that the 

series is generated by the alternative process if not by the linear process. And problems arise when 

the true data generating process (DGP) is a nonlinear series other than the nonlinearity specified by 

the alternative. An illustration of the difference between general linearity test and specific linearity test 

is provided in Figure 1.1. If the specific linearity test has low power against other nonlinearities, it 

could incorrectly place the true DGP in the half sphere of the linear series, to which the true DGP does 

hot belong. Some researchers try to justify the assumption of specific linearity test by comparing the 

alternative model with other nonlinear models in estimation and forecasting, but success is not always 

achieved. 

This paper is inspired by the work of Luukkonen et al. [77] and Saikkonen and Luukkonen [106]. 

Given the idea that, as Luukkonen, et al. [77} say, "a test designed with a specific non-linear alternative 

in mind may also have power against other non-linear models'' and "the LM tests may then be regarded 

as linearity tests against incorrect non-linear models^, Luukkonen et al. [77] conduct a power properties 

study of six tests (the two LM tests with bilinear alternatives, the LM test with exponential autoregressive 
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Figure 1.1: General linearity test (left) and specific linearity test (right) 

alternative, the McLeod Sc Li's test, the Keenan's test, and the Tsay's test) against four nonlinear models 

(the ARCH, BL, EAR and SETAR models) using both asymptotic theory and Monte Carlo simulation. 

They come to the conclusion that "the power of LM tests against 'incorrect' alternatives varies widely 

depending on the parameters of the data generating process" and none of the discussed tests can be 

used as a tool for determining the type of non-linearity in univariate time series models. Saikkonen 

and Luukkonen [106] perform a simulation experiment to investigate the size and power properties of 

five tests (the two LM tests with bilinear alternatives, the LM test with exponential autoregressive 

alternative, the McLeod Sc Li's test, and the Keenan's test) for series simulated from AR, BL, and EAR 

models. They find that none of the tests can serve as an overall test for the two types of nonlinearities 

considered. 

Despite the results of Luukkonen et al. [77] and Saikkonen and Luukkonen [106], it is still possible 

that there exists a test which has generally good powers against nonlinearities in time series, especially 

after quite a long time of development in time series analysis. By utilizing the power of a specific linearity 

test against "incorrect" nonlinear models, the paper considers applying the linearity test constructed 

specifically to general linearity testing. As Luukkonen et al. [77] and Saikkonen and Luukkonen [106] do, 

the LM test is discussed as the specific linearity test. To evaluate its performance as a general linearity 

test, a popular general linearity test, the BDS test, is introduced for comparison. Both power and 

size properties of the tests are investigated using Monte Carlo simulation and Bootstrap methods. The 

bootstrap method is introduced to see the effect of factors such as sample size, autoregressive coefficient. 
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etc. on the power and size of the tests. The data generating process are the nonlinear models introduced 

in Chapter Two. Though the powers of the LM tests vary according to the data generating process, as 

Luukkonen et al. [77] and Saikkonen and Luukkonen [106] find, we are able to find that the START, 

the LM test with the STAR model as the alternative, has generally good powers for all the nonlinear 

models discussed. Comparison of the START with the BDS test confirms that. 

The rest of the paper is organized as follows. From the perspectives of specification, testing, estima­

tion and forecasting, Chapter Two provides a literature review about the six nonlinear models: the BL, 

EAR, TAR, ESTAR, LSTAR and ARCH models. Chapter Three Testing Nonlinearities in Time Series" 

conducts a size and power properties study of five LM tests (the two BLTs, the EART, the START, the 

ARCHT) and the BDS test against time series simulated from the AR and the five nonlinear models 

introduced in Chapter Two. An empirical study of four major countries' foreign exchange rate series 

is provided in Chapter Four. Linearity tests in the form of START and BDS are applied to the data 

before they are estimated as nonlinear ESTAR and BL models. Meese and Rogoff's myth that nonlinear 

models cannot do better than the random walk model is also discussed for this specific data. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter is a literature review of five nonlinear time series models with an effort to provide an 

overall view about specification, testing, estimation and forecasting for each model. But before that, 

let's first discuss two questions that are frequently brought up about the nonlinear time series model. 

2.1 Why is Nonlinear Time Series Model? 

.although the parametric time series analysis starts with the linear time-series modeling, in recent 

years, more and more nonlinear time series models have been proposed and the linear models no longer 

dominate the time series model analysis. 

The birth of the nonlinear time series models can be attributed to the research of frequency-domain 

phenomena in the natural sciences. In the frequency-domain, issues such as limit cycles, jump resonance, 

amplitude-frequency dependency, have been considered. These problems are beyond the ability of the 

linear time series models because: 

1. With the linearity assumption, the stationary solution to time series converges to a constant 

point as time goes to infinity. This constant point is called the "limit point". So it is hard to use linear 

time series models to describe limit cycles. 

2. The joint distribution of linear models is symmetric, therefore they may not be suitable for 

strongly asymmetric data. 

3. Linear models are not ideally suited for data exhibiting sudden bursts of very large amplitude at 

irregular time epochs. 

In the economics field, similar nonlinearities have been found in many important economic vari­

ables, such as unemployment rate, production variables like GNP, GDP, and industrial production, 

consumption, price index, nominal and real exchange rates, stock prices, etc. 
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The evidence of nonlinearities is particularly compelling for the unemployment variable. By con­

structing a test under the framework of a second-order Markov process, Neftci [86] finds that the postwar 

quarterly US unemployment variables are characterized by sudden jumps and slow drops. Rothman [104] 

applies a first-order Markov procedure to the US unemployment variables and finds evidence of asymme­

try in aggregate unemployment rates. Moreover, he identifies the cyclical behavior of the unemployment 

rate in the manufacturing sector as the primary source of asymmetry in the aggregate unemployment 

rate. With the introduction of the BDS test, Brock and Sayers [19] are able to detect the nonlinearities 

in US unemployment rate. Burgess [21] presents evidence of nonlinear dynamics in the UK employment 

variable by using a multivariate, structural model of employment. Besides the steepness of the business 

cycle that is shown by the unemployment variables, Sichel [110] constructs a test and shows that the 

unemployment rates also demonstrate the deepness character of the business cycle. Peel and Speight [94] 

model the unemployment rate data of Germany, Japan, UK and US by the ARCH, SETAR and TAR-X 

models and they find that there are nonlinear structures in the unemployment rates of all the countries 

investigated except that of Japan. Rothman [105] examines the nonlinearities in the US unemployment 

rates from the perspective of forecasting. The out-of-sample forecasting performances of six nonlinear 

models are compared with that of the linear model. He finds that the nonlinear models improve on the 

linear model for out-of-sample forecasting once the unemployment rates are transformed to stationarity. 

Nonlinearity is also found in output variable such as GNP, GDP, and industrial production. Ap­

plying the Markov regime switching autoregressive model to the postwar US real GNP, Hamilton [58] 

concludes that there is a recurrent periodic shift from a positive growth rate to a negative growth rate. 

Unlike the Markov switching model, whose movements are regulated by an unobserved stochastic pro­

cess, the movements of the SETAR model depend on the past realization of the process. The latter has 

also been used widely in the discussion of output variables, for example, Tiao and Tsay [118], Potter 

[102], Clements and Krolzig [24], Clements and Smith [25]. The model proposed by Beaudry and Koop 

[9] can be regarded as a modification of the TAR model, so is the floor and ceiling model by Pesaran and 

Potter [96]. Both models confirm the existence of asymmetries in the responses of output to positive and 
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negative shocks. French and Sichel [49] model the conditional mean and variance of US real GNP by an 

asymmetric EGARCH model. They find strong evidence of asymmetry and persistence in the variance 

of real GNP and the conditional variance is highest around business cycle troughs. Weiss [127] uses a 

simple ARCH model and found ARCH structures in US industrial production. By applying the smooth 

transition autoregressive model, Terasvirta and Anderson [116] find evidence of asymmetric dynamics of 

the industrial production for most countries they discuss. Peel and Speight [95] test for the presence of 

output mean and variance nonlinearities in international industrial production and US and UK sectoral 

production using ARMA-GQARCH, BL and joint BL-GQARCH models and find evidence in favor of 

nonlinearities. 

Nonlinear dynamics are not rare in financial series such as exchange rates, stock prices, and interest 

rates. Nelson [87] proposes the nonlinear EGARCH model to estimate the risk premium on the CRSP 

(Center for Research in Security Prices) value-weighted market index from 1962 to 1987. Cao and Tsay 

[23] explore the use of TAR model in describing monthly stock volatility series. It is suggested that the 

stock volatility exhibits significant lower-order serial correlation when the volatility is large, indicating 

certain volatility clustering in stock returns. Engle and Ng [46] measure and test the asymmetric impact 

of news on stock return volatility by various ARCH models. Hsieh [65] finds that there is substantial 

nonlinearity in a multiplicative rather than additive form in daily changes of five major foreign exchange 

rates. Byers and Peel [22] discover that spot exchange rates exhibit nonlinearity in either of, or both, 

mean and variance by using a bilinear quadratic ARCH model. Engel [42] applies the Markov switching 

model to 18 quarterly exchange rates series and finds that the Markov model beats the random walk 

model in predicting the direction of exchange rate changes. Krâger and Kugler [71] show that moderate 

and large exchange rate changes have different behavior by estimating the TAR model to five weekly 

dollar exchange rate series. Michael et aL [83], Taylor and Peel [113], Baum et al. [8] study the nonlinear 

adjustment to purchasing power parity by the ESTAR model. Balke and Fomby [6] find that various 

short-term interest rates exhibit threshold cointegration. The unit-root tests by Enders and Granger 

[41] show that it is an asymmetric process in the form of TAR and especially M-TAR for the interest 
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rates to move toward the long-run equilibrium. 

Possible economic explanations for the nonlinear behaviors of those economic variables are as follows. 

First, the business cycle asymmetry hypothesis. The idea that the business cycle is asymmetric 

can be traced back at least sixty years to the work of Mitchell [84] and Keynes [69]. The idea of the 

so-called Mitchell-Keynes business cycle hypothesis can be expressed clearly by Keynes' own words: "the 

substitution of a downward for an upward tendency often takes place suddenly and violently, whereas 

there is, as a rule, no such sharp turning point when an upward is substituted for a downward tendency'. 

If this theory holds, then the indicators of the business cycle, such as GNP, GDP, industrial production, 

inventory, price index, unemployment, consumption, investment, etc., should be characterized by the 

same asymmetry associated closely with the business cycle. 

While the business cycle asymmetry hypothesis can explain the nonlinear behavior of some macro 

variables, the nonlinearities in other variables, such as the exchange rates and the stock prices can be 

approached microeconomically. 

Heterogeneity of participants in the financial market is often cited as a major source of nonlinear 

dynamics of financial series. De Grauwe et al. [29] prove that the interaction between the fundamental­

ists and the chartists can generate chaotic exchange rate dynamics for a wide range of parameter values. 

Brock and Hommes [17] propose an asset pricing model, under which market participants have hetero­

geneous expectations and move between different beliefs of future prices according to a "performance" 

indicator. This model is able to generate various nonlinear dynamics for exchange rates. Other sources 

of heterogeneity come from the traders' objectives (Peters [97], Guillaume et al. [55]), such as investment 

horizons, geographical location, and various types of risk profiles and institutional constraints. 

There is an emerging theoretical literature on the persistence of the deviation of the real exchange 

rates from the purchasing power parity in the presence of market frictions. Dumas [36], Sercu et al. [108] 

develop equilibrium models of real exchange rate determination which take into account transaction 

costs and suggest that the exchange rate deviations from equilibrium may be controlled by nonlinear 

adjustment such that the speed of reversion towards equilibrium increases with the size of the deviation 
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from equilibrium when there are nonlinear factors governing the costs of arbitrage. Flood et al. [47], 

Rose and Svensson [103], propose the target zone modeling of managed floating of exchange rates. 

The Imperfectness of exchange market has also been used to explain the nonlinearities in nominal 

exchange rates. Hsieh [66] considers standard rational expectations monetary model of exchange rate 

determination with stochastic intervention rules. 

2.2 What is Nonlinear Time Series Model? 

What is a nonlinear time series model? To put it in an easy way, it can be said that any time series 

model that is not linear, or not of ARMA type, is a nonlinear time series model. While mathematically, 

it is hard to incorporate all the nonlinear time series models in one simple expression. Here let's first 

look at a seemly unrelated topic, the Wold's theorem [131], which can be stated as the following. 

If {xt} is a zero mean non-deterministic second order stationary process, it can be expressed as 

OO 
x« = + Ut' (—I) 

i=i 

where ai < °o, {ut} is a process uncorrected with {xt }•, and the sequences {oe} and {u£} are 

u n i q u e l y  d e t e r m i n e d  w i t h  v t  b e i n g  t h e  l i m i t  o f  l i n e a r  c o m b i n a t i o n s  o f  x s ,  s  < t .  

Basically, the Wold's theorem, which is also called the Wold's decomposition, states that a second 

order stationary process has a one-sided infinite order moving average representation in terms of an 

uncorrected process {ut} , but it does not mean that the process necessarily conforms to a linear model. 

The basic objective in time series model building can be described as follows. Given a zero mean 

stationary time series {yt}, the goal is to seek a function h (.) such that 

MîZt, Ift-i, ---) =£t, (2-2) 

where {et} is em independently identically distributed (HD) process, and to be consistent, the assumption 

for {et} will remain the same throughout the paper utiIpss stated otherwise. Note that sometimes1 {et} 

is assumed to be normally independently identically distributed (MID), which is a more restrictive 

'For example, while testing series by LM test. 
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condition than the ŒD assumption. The class of linear models is defined by restricting h (.) to be a 

linear function of yt, 2/t-i. • - -, like 

B { B ) y t =*St ,  (2.3) 

with H ( B )  =  , B  being called the backward shift operator. The equation (2.3) can be expanded 

as 

2/t + 53 = £t- (2.4) 
t=l 

If H  (r) # 0, |z| < 1, (2.3) can be transformed as 

y t  =  H ~ l { B ) e t  = r(S)st (2.5) 

with r(fl) =23~oCiB*,or 

ye = +Cf (2.6) 
t=i 

Equation (2.1) and (2.6) look very similar except that according to the Wold's theorem a stationary 

series can be expressed in a linear combination of uncorrelated series, while a linear series requires a 

linear combination of independent processes, which is a more restrictive assumption. 

If H  (S) can be written in the form 

H ( B )  =  
1 + <p\B + • - - 4- <i>'pBp 

1  +  8 \ B  +  • • • - ( -  9 q B i  

then th e  resulting model for yt becomes 

p  t  
yt = 53 til*-* + 53 + £' (2.7) 

i=l J=1 

with 4>i = —<pi, i — 1, • • • , p. The model in the form of (2.7) is the well-known autoregressive moving 

average (ARMA) model with the autoregressive order p and moving average order q. The autoregressive 

model of order p (AR(p)), 
p  

yt = ^ <t>ïyt-i + et, (2.8) 
i=l 

is obtained from (2.7) by letting 9\  = 8^ = - • • = 9 q  — 0. If the autoregressive coefficients {<p£} are all 

zeros, the ARMA(p,<7) model is reduced to the moving average model MA(ç), 

1 

î/t = ^ 4- ct- (2.9) 
>=1 
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To define the nonlinear time series model, let's again look at the equation (2.2). Obviously, the 

nonlinearity could come from the fact that /i(.) is not a linear function of yt, yt-i, , but it's also 

possible that the deviation of Et from the HD assumption causes the nonlinearity of yt. The source of 

the nonlinearity divides the two classes of nonlinear time series models this paper is going to discuss. 

A simple class of nonlinear time series models is the nonlinear autoregressive (NLAR) models which 

has a general form as 

yt  = / (•) + </(•) + £e, (2.10) 

where /(.) is an AR process of {y t}, g(-)  is a nonlinear function of t/t-i and lagged terms of 

the dependent variable yt and the disturbance variable et. The NLAR model can be easily extended to 

NLARMA model by defining / (.) as an ARMA process. However, as we know that an ARMA process 

can be approximated by an AR process with long enough lags under quite mild conditions, the NLAR 

model instead of the NLARMA model will be discussed in this dissertation. Introduction of lagged 

error terms e£-j into the nonlinear g (.) function can be looked upon as a parsimonious way to express 

the nonlinearity in g (yt, yt-1. •••)• So modeling a series as the NLAR model can be boiled down 

to the task of finding a nonlinear function g (.) for the pre-whitened series zt = yt — /(.) such that 

g{z t - i ,  c c - j )  —£f 

With a defined form of g (.), the NLAR model can be classified into more specific nonlinear time 

series models. In this paper, the bilinear (BL) model, the exponential autoregressive (EAR) model, the 

threshold autoregressive (TAR) model, and the smooth transition autoregressive (STAR) model will be 

discussed for the NLAR class. 

The NLAR model describes the nonlinearity in time series by the model mean. However, there is 

another group of nonlinear model that captures the nonlinearity by the disturbance term. The repre­

sentative is the autoregressive conditional heteroskedastic (ARCH) model. 
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2.3 The Bilinear (BL) Model 

Similar to Wold's [131] work of presenting a stationary series as a limit of linear combination of 

some uncorrelated process, Volterra [126] has shown that under certain conditions the process {yt} can 

be written as 

Vt -E 
i=l 

53* " (Ui*U2'" ' II e<-uj 
ttt tti j=X 

(2.11) 

This is known as a Volterra expansion and the kernels gi (ui.ua. • • • ,Ut) are known as Volterra kernels. 

However, it is difficult to estimate a nonlinear time series process in the form of its Volterra expan­

sion. Mohler [85] introduces the class of bilinear models which are later discussed in detail by Granger 

and Anderson [51, 52], Subba Rao and Gabr [112]. 

The general representation of bilinear model BL(p, m, k)  is 

P m k 

Vt = M + 53 ^ ̂  Cijy t - i^t - j  -ret, (2.12) 
i=l i=l j=l 

where # 0. Based on the AR(p) model, the BL(p, m,k)  model adds the cross-product terms of 

yt-i and st-j to account for the nonlinearity, ; e [1,2, - - - , m] and j 6 [1,2. ••• ,fc]. Therefore, if all the 

bilinear coefficients Cij are zeros, the BL(p, m, fc) model becomes an AR(p). Brockett. [20] shows that 

with suitable choice of the model parameters, the bilinear model can approximate to an arbitrary degree 

of accuracy any "well-behaved" Volterra series relationship over a finite time interval. And compared 

with the Volterra series, the bilinear model is more parsimonious. 

Applications of the bilinear model include Maravall [79], Subba Rao and Gabr [112], and Terdik 

[117], among others. 

In his study of the Spanish currency from 1974 to 1980, Maravall compares the bilinear model with 

the linear MA model for estimation and forecasting. His introduction of the bilinear model is based on 

the diagnostic checking of the estimated residuals from the MA model: although first order diagnostic 

checking of the residuals series reveals no conflict with the assumption that it is a white noise process, the 

AC F s of squared residuals series display pattern of autocorrelations for low-order and seasonal lags, which 

means the squared residuals series is not a white noise process let alone being independent. Therefore, 

the residual process is not independent and may be nonlinear since the square of an independent series 
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should be independent too. Estimating the currency series as the bilinear model is able to decrease the 

residual variance and increase the forecastability. And the ACFs of the estimated residuals from the 

bilinear model indicate there are no non linearities left. In conclusion, Maravall mentions that the benefit 

of the bilinear model is observed especially at periods of atypical behavior or sequences of outliers. In 

his empirical analysis, the improvement of the forecast errors is concentrated over the last two months, 

when linear forecasts are over-estimating owing to an unexpected drop in currency. Actually, the bilinear 

model can be regarded as an outlier filter in the sense that it becomes operative and smooths outliers 

when atypical behavior sets in and is mostly inoperative during a normal regime. Maravall also illustrates 

that the bilinear model can capture a special type of nonstationarity that cannot be captured by linear 

model. 

Subba Rao and Gabr [112] study the unemployment variable of west Germany by looking at the 

monthly unemployment rate from January 1948 to May 1980. Test confirms that there are nonlinearities 

in the unemployment series. Estimation and one-step-ahead forecasts show that the bilinear model is 

better than the linear AR model. 

Terdik [117] estimates two financial series in the form of bilinear model: the daily closing S&cP 500 

index between 04/21/1982 to 10/02/1998, and the daily closing prices of IBM stock prices for the period 

01/02/1968-05/29/1998. For the S&cP 500 index, the bilinear model is significantly better than an AR(1) 

model according to estimated variance, which decreases from 25.2099 to 1.4912. 

Subba Rao and Gabr [112] also propose an algorithm to estimate a parsimonious BL(p,0;m, k)  

model 
p m k 

x t  4- 53 = 01 +• 53 53 b a x t - i e t - j  +  et-
<= i t=i j=i 

The steps are: 

1. Estimate a full AR(p) model, by using the AIC to select p for 0 < p < 7, where 7 >m.k.  Record 

the mean sum of squares of the residuals as â\ (1) and the AIC as AIC(l). Then the best subset AR. 

model is fit based on the full model using the algorithm described by Haggan and Oyetunji [56]. The 



www.manaraa.com

13 

resulting model is 

Xt T f c j  •+• ûjfe2Xt_fc2 4- * * * Qfc| Xt_fc| = fit, 

where 1 < ki < k% < • • • < ki < p, and the mean sum of squares of the residuals is 5, (2) and the AIC 

is AIC(2). 

2. Fit the bilinear model 

Xt 4-a i^xt-ki  + a k2 x t -k 2  4 a kiXt-kt  = a + bi jXt- ie t - ]  -r fit, 

for all (i, j) 6 Ti, where Ti = {(z, j) ; i, j = 1, 2, • • • , £, p < Ç < 7} . Choose the combination (ri,Zt) 

by the AIC and record it as SBL(fcj, 1), which is 

Xj ûfcjXt—fci f* Qkixt—k? 4* * * * Xt_fc| — ct b r^iiXt—n fit—it 4™ fit, 

with ^ (SBL (fct, 1)) and AIC(SBL(Ar,, 1)). 

3. Estimate SBL(A:(,2) by 

Xt "f* Xt—T ûfc^Xt—ki  T * * ' ûfcj Xt—Û Xt—n fit—it ~f" rfit—5 fit, 

where (r,s) € To = — (rlt. Again choose the SBL(fcf,2) model with (r2, lo) by AIC, which is in the 

form 

Xt Xt—jfci "4e dk"xxt—ki 4* * * * Xt—^ <1 ^ fe^tit Xt—n fit—it *4" b r^i^Xt—r^fit—f? fit* 

Same estimation procedure will continue until a bilinear model SBL(fcj, m) with minimum AIC is found, 

which can be written as 

x t  +at C l x e -k i  +  a*2xt-*2 "i Ofc,xt_*,  =  a  +  ̂ ^b r j i i Xt-r j et - i 1  -r fit-
j=i 

4. Once the order of the bilinear model is found, the model parameters can be estimated by the 

Newton-Raphson iteration method. Initial parameter values come from the estimates of previous step. 

For example, when estimate the SBL(fcj, 1), it autoregressive coefficients can take the initial value equal 

to the estimates of the subset AR model, and the bilinear coefficient [riJi) = (0,0). 

An LM test against the bilinear alternative is presented by Weiss [128], and Saikkonen and Luukko­

nen [106]. Chapter Three will discuss the test in detail. 
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2.4 The Exponential Autoregressive (EARJ Model 

The literature about the EAR model is concentrated in the late 70s and early 80s. Haggan and 

Ozaki [57] discuss the EAR model generally and provide an estimation procedure. Ozaki and Oda [92] 

and Ozaki [91] propose an EAR(2) model. Lawrance and Lewis [72, 73] introduce the EMA(l) model 

and the EARMA(p, q) model, which extend the EAR model by allowing for nonlinear MA terms. 

The general EAR(p; d) model can be expressed as 

p p 

y* = m + 53 + [®p i -yy t -d)  -1] -r=-£, (2.13) 
i=l t=l 

where yt-d is the transition variable, d is the delay parameter that varies between 1 and p, 7 serves as 

the transition parameter that determines the speed of transition. 

We can see that the EAR(p) model is actually an AR(p) model plus some nonlinear terms in the 

form of [exp (—7y?_<i) — l] yt-i, Vi. The term [exp (—7yf_d) — l] is bounded between —1 and 0 and is 

symmetric around 0 for yt-d S (—00, +00). When [exp (—ryf-d) — l] = 0, the EAR model is reduced 

to an AR(p) model 
p 

yt = M + 53 + (2.14) 
1=1 

when [exp (—~ry?_d) — l] = —1, the EAR model is reduced to another AR(p) process 

p 

yt=H + ^2(4>i—9i)yt-i+£t; (2.15) 
t=i 

if [exp (—yyt-d) — l] = b (—1 < A < 0), yt is an AR(p) process like 

p 

y t ^ H  +  ̂ i P i  +  h x S J y t - i + z t ,  ( 2 . 1 6 )  
i=l 

which combines the two extremes of (2.14) and (2.15). 

The value of [exp { — ' f V t - d )  ~  l] depends on two terms, the transition parameter 7 and the transition 

variable yt-d- In order to have a meaningful model, the value of 7 should be from the set (0,4-oc). Given 

that yt-d takes some intermediate values, when 7 = 0, the EAR model becomes an AR model with the 

form (2.14), when 7 —• +00, the EAR model is reduced to another AR model like (2.15), when 7 takes 

intermediate values, we get an EAR model. The value of [exp (—ryf_d) — lj will also change with t thus 
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with y t -d-  When y t -d  = 0, exp (0) = 1, y t  is in the form (2.14); when y t -d  —» ±oc, exp(-oo) = 0, y t  

can be expressed as (2.15); when yt-d takes intermediate values, yt has the form (2.16). Depending on 

different values taken by yt-d, the EAR model provides a smooth transition from one regime to another 

regime. And the model exhibits similar behaviors when it moves from the outer regimes to the middle 

regime. 

Saikkonen and Luukkonen [106] construct an LM test with the EAR model as the alternative. It 

will be introduced in Chapter Three. 

In Haggan and Ozaki's paper [57], they suggest that the EAR model can incorporate both amplitude-

dependent frequency and limit cycle behavior by making the coefficients of an autoregressive model 

amplitude-dependent so that it becomes 

rt = (<Pi + Tie-1*'-1) it_1i r (<pp + irpe~^x'-1 ) xe_p -r et. (2.17) 

In order to capture limit cycle behavior, the EAR(p) model (2.17) should satisfy 

(i). the roots of ,\p — = 0 lie inside the unit circle; 

(ii). the roots of Ap — ("Pi + T<) ^P~' = 0 do not all lie inside the unit circle; 

(iii). (1 - ELi (Pi)/ ELi Ti > 1 or (1 - ELi <?«) / Hi=i < o. 

When the absolute value of x t - i  is large, the value e-1*'-' tends to be trivial and the 

polynomials Ap — £2P
=l <piAp~t applies. So satisfying condition (i) means the system damps down to 

zero for large deviation of xt_i from 0; similarly, condition (ii) restricts the system to explode when the 

absolute value of xt—l is small. And condition (iii) guarantees that there is no single solution to the 

model. 

For an EAR(p) model, it is a nonlinear optimization procedure to estimate the order p and the 

coefficients {7, <p£, t£; i — 1, - - - , p} simultaneously . However, Haggan and Ozaki [57] avoid doing 

nonlinear optimization in early 1980s by fixing the parameter 7 at one of a grid of values and estimating 

the order p and the corresponding coefficients <p£ and t,. By doing this, the estimation becomes a linear 

regression of xe on x, and e~^*'-lx3 for s < t. The range of 7 will be chosen such that e~^x'~l is 

different from zero and one for most values of xt_i. The order of the exponential autoregressive model 
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p will be decided by AIC for each fixed 7, and then AIC is used again to find the best model over all 7 

values. 

By applying the EAR model to the Canadian lynx data, Haggan and Ozaki [57] shows that there 

is obvious periodic behavior for the Canadian lynx series. 

However, recently, there is a tendency that more STAR model instead of EAR model is used to 

model nonlinearities in time series . Perhaps it is due to the fact that the STAR model is a more general 

model which nests the EAR model and the single TAR model as its special cases. 

2.5 The Threshold Autoregressive (TAR,) Model 

The TAR model was first proposed by Tong [119] and then developed by Tong and Lim [122], Tong 

[120, 121]. 

The TAR model can be regarded as a "piecewise-linear" approximation to the nonlinearity. For the 

TAR(A:; p,d) model, it has the following form 

where rj < x^ < r,_i (j = 1,••• ,fc), k is the number of regimes separated by (A: — 1) nontrivial 

thresholds Tj (j = 1, • • • , k — 1), and p denotes the AR order. The quantity d is a positive integer, which 

is the threshold lag, or delay parameter. The variable x is the threshold variable. When the threshold 

variable is the past realization of the process {ye}, the TAR model is self-exciting and called SETAR 

model. Unless specified, the TAR model discussed in the paper is of SETAR type. 

The TAR model partitions the one-dimensional Euclidean space into k regimes and follows a linear 

AR model in each regime. The individual AR models are different from each other, thus is the TAR 

model nonlinear on the whole, and is asymmetric and adjusts abruptly and suddenly from one regime to 

another. According to Tong [121], the key features of TAR model include time-irreversibility, asymmetric 

limit cycle and jump phenomenon. 

Depending on the values of k, p and d, the TAR model can have various forms. A simple form of 

p 
(2.18) 
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TAR model is the two-regime TAR(2;p, d), which can. be expressed as 

p p 
Vt = ItH 1 + (1 — It) It ^2 + (1 — I*) + Et '  (2.19) 

where 4>u # for at least one value of i, /t is the Heaviside indicator function such that 

1 if Vt-d > 0 
0 if y t-d < 0 ' (2.20) 

Here we have two regimes, in each regime there is an AR(p) process, the linear attractor is 0 that 

is the long-run equilibrium value of the sequence {ye}- To be more complicated, the linear attractor can 

take some value other than 0, like a nonzero constant or a trend term, and the disturbance terms for 

two regimes can be different too. 

Enders and Granger [41] propose a momentum threshold autoregressive (M-TAR) model by using 

A yt-d, change in the lagged dependent variable, as the transition variable instead of yt~d in the indicator 

function. For the model M-TAR(2; p,d), the indicator function of the model now becomes 

By introducing the M-TAR model, we can explain the "sharpness" or "steepness" in business cycles. 

Sichel [110] discusses the distinction between "sharpness" and "deepness". Sharpness occurs when 

contractions are steeper than expansions and deepness occurs when troughs are more pronounced than 

peaks. Ordinary TAR model can capture the "deepness" by the different values of 4>\ and <p2. For 

example, in the TAR(2; 1,1) model, if |0i| < |<p2|, the negative phase of {yt }• will be more persistent 

than the positive phase. While using M-TAR model we can express the "sharpness" by the values of 

<t>x and <pn- In the example, if |<p1| < |<p2|, the M-TAR model will exhibit substantial decay for negative 

Ayt_i, but little decay for positive Ayt-i • 

The TAR model has been widely used in the analysis of economic variables such as GNP (Tiao 

and Tsay [118], Potter [102], Beaudry and Koop [9], Pesaran and Potter [96]), unemployment (Peel and 

Speight [94]), and exchange rates (Krâger and Kugler [71], Pippenger and Goering [101]), to mention 

but a few. 

(2.21) 
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Potter [102j fits a TAR(2;5,5) model on the seasonally adjusted quarterly real GNP of US measured 

at 1982 prices for the period 1947:1-1990:4. Tiao and Tsay [118] estimate a TAR(2;2,2) model and a 

four-regime refinement with the US GNP for the same period. Although the two estimated TAR model 

are not exactly the same, they both have a large negative coefficient on the second lag in the lower 

regime, indicating that the postwar US economy moves quickly out of recession. Tiao and Tsay [118] 

also go ahead to evaluate the forecasting performance of the TAR model against a linear AR(2) model by 

the Monte Carlo simulation method. They find that although the overall forecasting performance of the 

TAR model is only marginally better than that of the AR model, the TAR model is markedly superior if 

considering forecasts made in the lower regime. The reason behind this is that the majority of the data 

points fall into the upper regime, so the linear AR(2) model, which is determined by those points to a 

large extent, resembles high similarity to the TAR model in this regime. Therefore, the nonlinear model 

forecasts made in the upper regime will be close to that of the linear model. But when the forecasts 

origin from the lower regime, only the TAR model can detect the regime change and express the change 

by a different process. So it is here that the TAR model can gain relative to the linear model. 

Beaudry and Koop [9] introduce a variable called current depth of a recession (CDR), which is the 

gap between the current level of output and the economy's historical maximum level, as the threshold 

variable in their TAR fitting of the quarterly real GNP of the postwar US. They find negative innovations 

to GNP are much less persistent than positive ones. Moreover, the effect of a recession on the output 

forecasting is negligible after only eight to twelve quarters while the effect of a positive shock is persistent 

and increasing over time. Pesaran and Potter [96] propose a floor and ceiling model for US output, which 

is considered as an extension to Beaudry and Koop's model. 

With the transition variable being the past growth rates of industrial production, Peel and Speight 

[94] apply the TAR model to the unemployment rates for Germany, Japan, UK and US. The estimated 

TAR models yield substantial reductions in residual variance over the linear counterparts, and have a 

threshold near zero, which clearly indicates the asymmetric behavior of unemployment during expansion 

and contraction of the countries' economy. 
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Krâger and Kugler [71j find that the TAR model can be used to describe the behavior of five weekly 

dollar exchange rate series: the French franc, the Italian lira* the Japanese yen, the Swiss franc and the 

German mark against the US dollar. The estimated TAR models for the first four exchange rates share 

the common characteristics: they are TAR models of three regimes; the process of the upper and the 

lower regimes are similar with the AR order equal 0 and the middle regime is an AR(3) process; and 

the estimated standard deviations of the outer regimes are larger than that of the middle regime. Such 

kind of TAR models supports Krâger and Kugler's argument that authority intervenes the exchange 

market when the depreciations and appreciations are large but adopts a Laissez-faire attitude when the 

changes are small. Pippenger and Goering [101] prove that the TAR model can be used to describe the 

log changes of 13 countries' monthly exchange rates. Moreover, they find that the TAR model produces 

better forecasts than the random walk model in terms of MSPE for both in-sample and out-of-sample 

forecasting. 

Literature emphasizes the forecasting performance of the TAR model include Clements and Smith 

[25, 26, 27] and Clements and Krolzig [24]. 

Clements and Smith [25] compare the forecasting performance of TAR model with the AR model for 

US GNP using five methods: a Monte Carlo simulation method, a bootstrap method, a normal forecast 

errors method, a dynamic estimation method, and a naive method. They conclude that the Monte 

Carlo simulation method is generally good and whether a TAR model can forecast better than an AR 

model out of sample depends on the historical epoch and the regime where the forecast is made, which 

confirms the results by Tiao and Tsay [118]. They also conduct a Monte Carlo study of the forecasting 

performance of the proposed empirical TAR models on exchange rates, GNP, GDP, and savings ratio by 

several quantitative and qualitative criteria (Clements and Smith [26]), and a forecast evaluation of TAR 

model against the random walk model for exchange rates based on traditional measures such as MSPE 

as well as generalized impulse response functions (Clements and Smith [27]). Both again emphasize that 

"state of nature" has a very important effect on the forecasting performance of TAR model. 

Tsay [124] and Hansen [59, 60, 61] discuss intensively about the testing of TAR model. 
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Tsay [124] proposes a procedure to test a TAR model that combines the nonlinearity tests of Keenan 

[68], Tsay [123], and Petruccelli and Davies [98]. The rationale of his test is that: within each threshold 

regime, the predictive residuals are white noise asymptotically and orthogonal to the regressors. However, 

the orthogonality between the predictive residuals and the regressors is destroyed once the observations 

enter another regime. So the F statistic of the regression of the predictive residuals on the regressors 

can be used to test for threshold nonlinearity. 

Based on his test, Tsay suggest to follow the following steps to identify a TAR model: 

1. Select the order of AR(p) and the set S of all possible threshold lags d. Tsay prefers to use the 

PACF to identify the order of an AR process. For a give p, the set S of all possible threshold lags d is 

assured to be {1, • • • , p}. When there is seasonality, the set S can also include seasonal lags. 

2. Arrange the data cases according to the threshold variable y t-d- Then fit arranged autoregressions 

for a given p and every element d of S to get the predictive residuals. Perform the threshold nonlinearity 

test F (p, u) by regressing the standardized predictive residuals on the regressors. If nonlinearity is 

detected, select the delay parameter dp. The delay parameter dp is chosen by max„€s |f (p, u)| with 

respect to v. 

3. For given p and dp, locate the threshold values by using the scatter plots of the threshold variable 

against the predictive residuals, the standardized predictive residuals, or the t ratios of recursive estimates 

of an AR coefficient. 

4. Refine the AR order and threshold values, if necessary, in each regime by using linear autore-

gression techniques. This step may rely on information criteria such as the AIC. 

Tsay applies the testing and estimation procedures to the classic sunspot and the Canadian lynx 

data. Both are estimated as a three-regime TAR model. His testing technique is also used by Tiao and 

Tsay [118], Potter [102]. 

According to Hansen, the testing of nonlinearity in the context of TAR model falls into the class of 

tests with nuisance parameters that are not identified under the null hypotheses. Specifically, the vari­

ables of the alternative TAR model such as the lag of the threshold variable, the number of regimes, are 
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not included in the parameters of the null linear model, therefore they are nuisances in the linearity test. 

Due to the existence of the nuisance parameters, although the linearity test is easy to construct, there is 

no theoretical knowledge as for what kind of distribution the test will follow exactly or asymptotically. 

Hansen [59] shows that a transformation based upon a conditional probability measure yields an asymp­

totic distribution free of nuisance parameters and that this transformation can be easily approximated 

via simulation. He calculates the test statistics over a grid of values for the nuisance parameters and then 

takes the supremum, average or exponential transformation of the statistics. Application of the result 

to Potter's study of US GNP [102] suggests that the finding of a threshold effect in US GNP growth 

rates can be possibly explained by sampling variation. Application of Hansen's testing can be seen in 

Clements and Smith [27], Pesaran and Potter [96]. Hansen [60] finds that if the threshold effect (the 

difference in slopes between the two regimes) becomes small as the sample size increases, the asymptotic 

distribution of the threshold estimator is free of nuisance parameters. Similarly, the likelihood ratio 

statistic for testing hypotheses concerning the unknown threshold is asymptotically free of nuisance pa­

rameters. These asymptotic distributions are nonstandard, but are available in closed form, so critical 

values are readily available. The US unemployment rate is tested and statistically significant threshold 

effects are found. In his paper "Testing for Linearity" [61], Hansen discusses the problem of testing for 

linearity and the number of regimes for TAR model. The asymptotic and bootstrap distributions of 

the test statistic are calculated by simulation. Special attention is paid to the problem of conditional 

heteroskedasticity in the error while drawing inference on the conditional mean. The method is applied 

to annual sunspot means and monthly US industrial production. Both series follow a TAR(2) processes. 

2.6 The Smooth Transition Autoregressive (STAR) Model 

The idea of smooth transition can be traced back to Bacon and Watts [4]. The full development 

of the STAR model should be attributed to Terasvirta and his coauthors (Luukkonen, Saikkonen and 

Terasvirta [78], Granger and Terasvirta [53], Terasvirta [115], Terasvirta and Anderson [116], Eitrheim 

and Terasvirta [40]). 
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The STAR model can be generalized as 

where p is the autoregressive order, g {y t -d  — c; 7) is the continuous transition function, y t ~d is the 

transition variable, d is the delay parameter, 7 is the transition parameter with a positive value, c is the 

mid-point of the transition regime. 

If g (y t -d  — c; 7) is of the exponential form 

the model is the exponential smooth transition autoregressive ESTAR(p; d) model. Note that when 

7 —• 0 or 00, the ESTAR model will become linear. The term g (yt-d — c) in the ESTAR model is 

bounded between zero and unity and is symmetric around zero for (yt-d — c) € (—00,+00). When 

yt-d — c = 0, 5(0) = 0, yt is an AR(p); when (yt-d - c) — ±00, g (±00) = 1, {y{} is another AR(p); 

when (yt-d — c) takes intermediate values, {yt} is an AR(p) which is the combination of the two afore­

mentioned. According to Terasvirta and Anderson [116], the ESTAR model implies that the contraction 

and expansion have rather similar dynamic structures, whereas the middle ground can have different 

dynamics. An ESTAR model can therefore represent an economy that returns from high growth towards 

more "normal" growth in much the same fashion as it accelerates from low or negative growth towards 

the middle ground. Note that the EAR model is a special case of ESTAR with ^=0 and c = 0. 

When g (yt-d — c) is of the logistic form 

the model is called the logistic smooth transition autoregressive LSTAR(p; d) model. When 7* —* 00, 

g (yt-d — c") = —0.5 if yt-d < c", and g (yt-d — c') = 0.5 if yt-d > c*, therefore the LSTAR model 

becomes a single-threshold autoregressive model. The g (yt-d — c") term in the LSTAR model is bounded 

between [—0.5, 0.5] for (yt-d — c") 6 (—00,-1-00). When (yt-d — c*) —• +00, g(-i-00) = 0.5, {yt} is an 

AR(p); when (yt-d — c") —• —00, g(—00) = —0.5, {yt} is another AR(p); when (yt-d — c") takes 

intermediate values, {yt} is a combined AR(p). Different from the ESTAR model, the LSTAR model 

(2.23) 

(2.24) 
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too 
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Figure 2.1: Comparison of transition function g for ESTAR and LSTAR models 

isn't symmetric. The comparison of function g for the two STAR models are illustrated in Figure 2.1 

for 7 = 7* = 10. Applied to the modeling of business cycle indicators, the LSTAR model describes a 

situation where the contraction and expansion phases of an economy have different dynamics (Terasvirta 

and Anderson [116]). 

Note that when 7 = 0, the ESTAR (p; d)  model is reduced to an AR(p) model. Similarly, under 

7* = 0, the LSTAR (p; d) model is reduced to an AR(p) model too. 

Terasvirta and Anderson [116] study the STAR models of the form: 

yt = *io + irittft -t- (t20 4- *2to t) F {yt-d) + u' t, (2.25) 

where u t  ~NLLD(0,<x2), --- 7rjp ]', j = 1, 2, w t  = [ Vt-i tft-p ]' and F is a 

transition function, which is 

F (yt-d) = {1 +exp [-7 (yt-d - c)]}-1 

for the logistical STAR model and is 

F (yt-d) = 1 -exp [-7 (yt-d - c)2] 
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for the exponential STAR model, with 7 > 0. As for the specification of the STAR model, they suggest 

a three-step method: 

1. Specification of a linear AR model. 

This step is the base of the linearity test since the linear AR(p) model is nested in the STAR(p) 

model. So estimation of the autoregressive order p has a direct effect on the linearity test. If p is over­

estimated, the linearity test tends to have lower power; if p is under-estimated, it is possible that the 

test will incorrectly reject the null. 

2. Testing linearity for different values of the delay parameter d, and if it is rejected, determining d. 

With a pre-specified value of d, a Lagrange multiplier test of linearity against the STAR alternative 

can be constructed with the null hypothesis 

#0 : 02j = = 0, j = 1. • • • , p (2.26) 

against Hi : uHq is not valid" in the artificial regression 

p p  p  

yt = 0o+ $'iwt + + 5Z ë^yt-jyî-d + 53 + ut> (2.27) 
j=i J=I j=i 

which is the third-order expansion of the original STAR model (2.25). 

If linearity can be rejected for more than one value of d for 1 < d < D, then the value of d can be 

chosen as 

d = argminp(d), 

where p (d) is the p-value of the corresponding linearity test. This is based on the argument that the 

power of the corresponding test against the mis-specified nonlinear model can hardly be expected to be 

systematically higher than the power of the test for the correctly specified model. 

3. Choosing between LSTAR and ESTAR models using a sequence of tests of nested hypothesis. 

Based on interpreting the coefficients as functions of the parameters in the original model, the 
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hypotheses of the sequence of tests are 

ffou04j = 0, j = 1, • • • , p; (2.28) 

ff02:03j = 0|/?4j =0, 7 = 1. • • • , p; (2.29) 

Hq3:02j = 0|/?3j = 04j = 0, j = 1, p. (2.30) 

Combinations of rejecting or accepting one or another sequence of hypothesis will lead to different 

conclusions. If (2.28) is rejected, the chosen model will be an LSTAR model; if (2.28) is accepted and 

(2.29) is rejected, the ESTAR model will be selected; if (2.28) and (2.29) are accepted but (2.30) is 

rejected, the model will be LSTAR. However, when both (2.29) and (2.30) are rejected, the conclusion 

is uncertain. 

As for interpretation of the estimated models, Terasvirta and Anderson look at the roots of the 

characteristic polynomials and the implied limiting behavior of the series yt. The roots of the STAR(p) 

model can be calculated by solving 

p 
**-£(*1 j + *vF)*~i =0 

j=i 

for F = 0,1. The reason to obtain the roots when F takes extreme values is that they provide good 

description of the local dynamics of recession and expansion. The behavior of the series yt is a function 

of its lagged values and the estimated parameters. Nonetheless, an explicit solution of yt is usually 

unavailable. But the limiting behavior of yt as t —• oo given a starting value set is achievable and it can: 

(i). converge to a stable stationary point; 

(ii). display a limit cycle, i.e. the same set of q values y t .  yt-1, - - - . which repeats itself over 

time independent of the starting values; 

(iii). diverge; 

(iv). demonstrate chaotic behavior. The process does not diverge, but small changes in starting 

values can generate quite different solution paths. 

Eitrheim and Terasvirta [40] construct a series of LM tests to exam the adequacy of the STAR model. 

They are the LM test for the hypothesis of no error autocorrelation, the LM test for the hypothesis of 
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no remaining nonlinearity, and the LM test for the hypothesis of parameter constancy. Small-sample 

properties of the tests' F statistics are provided by simulation. 

Though the applications of the STAR to economic data series have occurred only recently, the 

literature is extensive and still growing. 

A representative is Terasvirta and Anderson's [116] effort to estimate quarterly OECD and European 

industrial production series with the STAR model. The LM tests reject linearity for most of the industrial 

production series. For the estimated STAR models, the characteristic polynomial of the recession regime 

has at least one complex pair of explosive roots while the expansion regime is stationary, suggesting that 

business cycles are asymmetric in the sense that the transition from recession to expansion is strong and 

swift but that from growth to contraction is weak and slow. 

Based on the theoretical work of Eitrheim and Terasvirta [40], Ôcal and Osbom [90] apply the 

STAR model with two additive smooth transition components to the UK consumers' expenditure and 

industrial production. It is shown that the consumption is characterized by two regimes: recession and 

expansion and the industrial production can be divided into three phases: recession, normal growth and 

high growth. 

Leyboume and Mizen [76] use the smooth transition analysis to endogenously determine the tran­

sition path (speed and midpoint of the transition) of the price series between two monetary policy 

regimes. The result shows that the transition process is related to the central bank independence and 

the widespread economy slowdown in early 1990s. 

Sarantis [107] tests and models the nonlinearities in the real effective exchange rates of ten major 

industrial countries using the STAR model. The LM test proposed by Terasvirta and his coauthors 

rejects linearities for eight exchange rates. Among them, the effective exchange rates of Germany, 

France and Belgium are specified as LSTAR models, suggesting different dynamics during the expansion 

and contraction phases; all the other five exchange rates are modeled as the ESTAR model, implying that 

the exchange rates move from upper or lower regimes toward the middle ground in a similar fashion. The 

estimated parameters 7, which controls the transition speed of the STAR model, are small in all countries, 
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indicating that the transition of the exchange rates from one regime to another is quite slow, which is 

contrary to the assumption of the TAR model and the Markov regime switching model. He also finds that 

the estimated parameters c are small though significant, which implies the appreciation and depreciation 

of the exchange rates are described by the different regimes of the STAR model. Characteristic roots 

of the estimated STAR model are also calculated to investigate the dynamic behavior of the effective 

exchange rates. Evidence of cyclical movements and asymmetric dynamics are found. The STAR models 

also outperform the Markov regime-switching model in out-of-sample forecasting. 

Inspired by the idea that adjustment process of deviation from PPP is nonlinear due to the existence 

of transaction cost in exchange rate market, Michael et al. [83], Baum et al. [8] introduce the ESTAR 

model to the study of purchasing power parity. Linearity is rejected for every adjustment process, and 

the estimated ESTAR model depicts that adjustment process behaves like random walk when deviations 

from PPP are small but is mean-reverting for large deviations from PPP. 

2.7 The Autoregressive Conditional Heteroskedastic (ARCH) Model 

All of the above mentioned models assume an IIP disturbance term {e£}, so that the nonlinearity 

is attributed to the model mean rather than to the model variance. However, the ARCH model has a 

disturbance term whose conditional variance is not constant, which gives rise to nonlinearities. 

The ARCH model was first introduced by Engle [44]. For an ARCH(p, m) series, its model specifi­

cation is linear in the form of an AR(p) as 

p 

y t  — M + 5Z + ut- (2.31) 
t=i 

However it tries to capture the nonlinearity by the disturbance term v t ,  which can be written as 

v t=£ t  \fht, (2.32) 

where 
m 

ht = ûtq -r (2.33) 
J=1 

To ensure that h t  > 0, it should be satisfied that q0 > 0, > 0. Also, condition ctj < 1 is 
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set to ensure weak stationarity of the series, {et} is an Mill) process with its variance equal to 1 and is 

independent of ut_j, j = 1, • • • , m. 

If h t  is an ARMA(m, n) process, we will have a {ye} series called GARCH(p, m, n) (generalized 

ARCH model) which was brought forward by Bollerslev [10]. However, we do not go into detail about 

G ARCH model here by the same reason that we discuss NLAR model instead of NLARMA model in 

this paper. 

It can be seen that for an ARCH model, the conditional variance of {ut} is predictable. By a little 

computation, the conditional variance of {%,} can be expressed by its past values 

uar(ut|ue_i,ut_2,---) = £[u?|t7{-i, ut-2, • • •] = ht = a0 + ̂  (2.34) 
i=l 

Therefore a large conditional variance tends to be followed by another large conditional variance and 

small conditional variance by small conditional variance. This feature implies that ARCH model is 

capable of producing clusters of outliers, which is common in economic and financial time series. 

As for the testing of ARCH disturbances, Engle considers the LM test as an ideal candidate. The 

LM test for the ARCH(p,m) model in the form (2.31), (2.32), and (2.33) will be 

with zt = [ 1 vf_1 • - • vf_m ]', f t  = - 1 = (r~ l  vf} tç - 1, = ef_0 Vt under 

the null restrictions. 

Since information matrix of the ARCH model is block diagonal, the following stepwise estimator 

proposed by Engle is asymptotically efficient. First, estimate the model mean parameters a by ordinary 

least squares, and obtain the residuals. Then estimate the conditional variance parameters 3 from the 

residuals. Based upon the estimates of a, a near estimate of f3 can be found. The cycle of estimating 

a and 0 sequentially continues until convergence occurs. The iterations are calculated using the scoring 

algorithm, and the resulted estimates of a and 0 are maximum likelihood estimates. 

Engle applies the ARCH model in the estimation of the variance of inflation for the UK. The 

quarterly consumer price index is used for the investigation of the variance of inflation for the UK 
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from 1958:11 to 1977:11. It is assumed that price inflation follows wage inflation, so the lagged quarterly 

index of nominal wage rates is included as a pre-determined variable. The mean of the ARCH model is 

constructed as the following 

p = /?i>_t + 02P-4 +#$P-5 + #4 (p - w)-! + 05, (2.35) 

where p is the first difference of the log of the quarterly consumer price index p and w is the log of the 

quarterly index of nominal wage rates. 

The fit of the UK inflation in the form (2.35) is reasonable and good. The inclusion of the first, 

fourth, and fifth lags of the first difference of the endogenous variable in the model accounts for the typical 

seasonal behavior. Least squares estimation produces less than 1 percent standard error of forecast and 

(-statistic greater than 3. The estimates of 02 and 0Z have equal and opposite signs, suggesting that 

it is the acceleration of inflation one year ago which explains much of the short-run behavior in prices. 

Serial correlation is checked and rejected by the LM test and Durbin's h statistic. 

The LM test for linear ARCH effects shows that a fourth-order ARCH process is significant. In 

order to meet the non-negativity and stationarity constraints of the ARCH model, a two-parameter 

variance function is assumed in the form 

ht = aa -h cci (0.4ef_i -h 0.3e?_2 + 0.2ef_3 -r 0. lej- t), 

where a linearly declining set of weights is given to the squared residuals by assuming that agents discount 

past residuals. The coefficients are estimated by the maximum likelihood method. 

Comparing the ARCH model with the least squares model through standard errors, one-step-ahead 

forecast variances and outliers, Engle shows that the ARCH process is able to improve upon the perfor­

mance of the linear least squares model and is able to provide more realistic forecast variances. 

After the work by Engle, the literature on ARCH expands dramatically, leading to the introduction 

of G ARCH, EGARCH, ARCH-M models, etc. The ARCH effects have been seen especially significant in 

financial data such as stock return, interest rates, and foreign exchange rates. Surveys include Bollerslev 

et al. [11, 12], Engle [45], Ghysels et al. [50], and Shephard [109]. 
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CHAPTER 3 

TESTING NONLINEARITIES IN TIME SERIES 

3.1 Introduction 

Linear or Nonlinear? 

For a given time series, there are many specific models that we can fit it to. Broadly speaking, 

these models can be divided into two groups: linear time series models and nonlinear time series models. 

There are numerous types of linear and nonlinear models. Chapter Two gives a glimpse of some of 

them. So, which type of model should we choose? And how can we know that the selected model is 

appropriate? 

In this chapter, we will focus on Lagrange multiplier (LM) tests for detecting nonlinearities in time 

series. The LM statistics can be calculated to test the null of linearity against almost every major 

nonlinear model. And, for each LM test, only the estimation of the null linear model is required. 

This means that an LM test constructed for one alternative can be used against a variety of other 

alternatives. The finite-sample size and power of different LM tests against various nonlinear models 

will be compared through the Monte Carlo method. Because the asymptotic critical values might not be 

a good approximation of the true critical values due to factors such as small sample size, the bootstrap 

method is also used to generate critical values. 

The LM test is a "specific" linearity test in the sense that it has a linear time series model (usually 

an AR(MA) type model) under the null and a specified nonlinear time series model as the alternative. 

There are other types of linearity tests called "general" linearity tests that do not have a particular 

nonlinear alternative in mind. Examples include McLeod and Li [80], Keen an [68], Tsay [124], Subba 

Rao and Gabr [111], Hinich [63], Ashley et al. [3], NEGM [89], White [129, 130]. The most widely used 

general linearity test is the BDS test. In this chapter, we will also discuss the BDS test and provide a 
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comparison to the LM test. 

3.1.1 Lagrange Multiplier Tests 

First suggested by Aitchison and Silvey [1, 2], the Lagrange multiplier (LM) method tests the effect 

of imposing the first order conditions for a maximum of the likelihood function under the restrictions of 

the null hypothesis. 

Consider a model that has a finite number K of unknown parameters 9 = (0t, , log 

likelihood function L (9), and the null hypothesis is in the form 

Ho : h3 ( 9) = 0 

with j = 1, • - • , p and p < K. 

Differentiating the Lagrangian function 

;=i 

with respect to the unknown parameters 9 and Lagrange multipliers A, leads to the first order conditions 

( D + H\ = 0 

1 />,(§)= 0 ' 

where D= (^57^} , Â = ( Ât --- Xp )pXl, i = 1, --- , k. j = 1, • • • .p. 
I  i  K x l  V. )  K x p  

The logic behind the LM test is that when the null hypothesis is true the restricted estimates 9 will 

tend to be near the unrestricted maximum likelihood estimate so that D will be close to the zero vector. 

Therefore the LM statistic can be calculated as 

LM — D'?~VD. (3.1) 

where J is the Fisher's information matrix evaluated at the restricted estimates 9 when the null hy­

pothesis is true. If the regularity condition that the order of differentiation and integration can be 

interchanged is satisfied, the information matrix can be obtained from the first derivatives of the log 

likelihood and be written as 
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According to Crowder [28], 

r^m{:r'[-êb}}='K-
where IK is the K x K identity matrix. So, instead of the information matrix 1, -5^57 or (§£) (§f )' 

can be used to calculate the LM statistic without affecting the asymptotic properties of the statistic. 

We ran always apply the LM test to a nested situation, where the null model is a subset of the 

alternative model, the parameter vector 9 can be partitioned into two subsets, and the restrictions are 

imposed on one of the subsets. Let - 9P )' denote the vector of parameters of interest 

and #2 = ( 9p+i &K )' the vector of nuisance parameters, then the null hypothesis is 

Ho : 9i = 910 

or 

H0 : h(9) = [ iixp Oix(ff-p) I [ #* ] - 0io = 0. 

where the elements of tixp are all ones and the elements of 0lx(Ar-P) are all zeros. 

Partitioning D l  

MSMoM 
and J 

îs]  
will lead to 

LM = D[ (jn - 3i2%%i) ~ l  Di- (3.2) 

Suppose for example, the non-linear model under the alternative hypothesis has the form 

Vt =g(x t;9) +te, 

where x t  is one-dimensional, and the eys are normally, identically and independently distributed as 

NHD(0,<r2). It is assumed that g (.) is linear if 9\  = flio, and is nonlinear otherwise. 

= 0 since if there is no restrictions on 62, the first derivative vector of the likelihood function with respect to 81 
will be a zero vector. 
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Under the above assumptions the log likelihood (omitting constants) will be 

L = -iriog<r2 - 2^c~. 
t=i 

when Ho is true when Ha is true 

LM = 5~2 (3.3) 

with {ct} being the residuals obtained when the null is true. 

Formula (3.3) can also be interpreted, as TR2 with R2 being the coefficient of multiple determination 

in the regression of ?£ on zlt and ?2t (Harvey [62]). 

Under the null hypothesis, the LM test statistic is asymptotically distributed as x2 with degrees of 

freedom equal to p, the dimension of 9 j or the number of coefficient restrictions under the null hypothesis. 

Early application of LM tests in time series analysis can be seen in the work of Pagan [93]. Later 

contributions include Engle [44] who develops an LM test against ARCH model. Weiss [128] and Saikko­

nen and Luukkonen [106] have considered an LM test for testing a bilinear alternative. Saikkonen and 

Luukkonen also propose an LM test for the EAR model. Luukkonen, Saikkonen and Terasvirta [78] and 

Terasvirta [115] suggest an LM test for the STAR model. Details about LM tests for various nonlinear 

models will be discussed in the section "Models and Tests". 
2 Since 

and 
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3.1.2 The BDS Test 

The BDS test gets its name from its original authors William Brock, Davis Dechert and Jose 

Scheinkman, who develop it in 1987 [15]. But, it is more fully described in the revised paper published, 

by Brock, Dechert, Scheinkman and LeBaron in 1996 [16]. 

The BDS test is a test for white noise. The alternative hypothesis of the test includes both non-

white linear and non-white nonlinear processes. Therefore, the BDS test does not provide a direct test 

for nonlinearity. Nevertheless, if the linear structure is removed through prior pre-whitening and the 

BDS test rejects the hypothesis that the residual process is white noise, this could be interpreted as 

evidence of nonlinearity in the original series. 

The BDS test uses the correlation function (also called the correlation integral) as the test statistic, 

which is calculated as follows. 

First, for some integer embedding dimension m > 2, x" = (zt, zt-i. ••• . zt_m+i), the "m-

histories'1* of the data are calculated for t = m, m + 1, • • • . n. Then (e) is calculated, which counts 

the proportion of points in m-dimensional hyperspace that are within a distance e of each other: 

(C) = (n — m + 1) (n — m) È È H } ' (3'4) 
x ' x ' i=m £=3+1 j=0 

r r 1 if 
f< - ( 0 if where /< 

be constructed as3 

•Es—j I 3-t—j 
%3—j I 

^ ^ ,||.|| denotes the superior norm. Then the BDS test statistic can 

W m , n  (e)  =  Vn-m-h I e "'" ( < 0  ^ , 
""m.n (c) 

(3.5) 

where the estimated variance of Cmtn (e) — C[,n_m+I (e)m is given by 

{m—1 
k m  + 2 -r (m - l)2 c2"1 - m 2 kc 2 m ~ 2  } . (3.6) 

3 LeBaron [74], Barnett et al [7] and many others state this equation as 

-Cm.n (c) — cl.n (e)r 
Wm,n (e)  = Vn- 17 m,n (<) 

Kanzler [67] suggests that the right formula should be 

Wm,n (e) = Vn-m+lC m - n  M  ( t ) W  , 
G m. n (C) 

arguing that the other formula gives the misleading impression that correlation integral of dimension 1 is to be estimated 
over the full sample and that the ratio term is to be multiplied by the square root of the full sample size. 
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The parameter c is the first-dimensional correlation integral 

c = ci,„ (e), (3.7) 

and k (e) is the probability of any triplet of observations lying within distance e of each other and is 

computed as 

t ( e )  = n(n- lHn-2) Z  ̂  Ê  +  v t=l j=t-H 1 

(-^tî Xr) Tg (xr, X5) "T" (x3 , X{) 1^ (Xj T xr) \. (3.8) 

Kanzler [67| shows that k (e) can be transformed to 

n n | 

-3^] /<(xS!xe)^2nl (3.9) 
3 = 1 t=»+l J 

to simplify the computational algorithm. 

Brock, Dechert, and Scheinkman [15] prove that Wm,n (e) is distributed asymptotically as a standard 

normal :V (0,1) for any m and e under the null hypothesis that {xe} is independently and identically 

distributed. 

The need to choose the values of e  (the radius of the hypersphere which determines whether two 

points are "close" or not) and m (the value of the embedding dimension) can be a complication in using 

the BDS test. Kanzler [67] illustrates that the BDS statistic appears to be most efficiently estimated if 

the measure of dimensional distance e is chosen such that the first-order correlation integral estimate c 

lies around 0.7. Unfortunately, the cost of finding the optimal e is quite high in terms of CPU time and 

memory. For a near-normal distribution, e being three halves the standard deviation of the actual data 

will achieve the same efficiency without any extra computational burden. Brock et al. [18] recommend 

that e is set to between half and three halves the standard deviation of the actual data and m is set in 

line with the number of observations available (e.g. use only m < 5 for T < 500, etc.). 

3.1.3 Bootstrap Method and Monte Carlo Simulation 

When we are performing hypothesis testing, sometimes we know the exact distribution of the test 

statistic, but usually the knowledge is less complete. Often large-sample theory is used to justify an 

A:(e) = 
n (n — 1) (n — 2) £ ^2 It (xe,x,) 

.*=1 
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approximating distribution. But a test based on asymptotic results may not give good results for small 

samples. In other situations, the exact distribution of a test statistic may be known, but the test may not 

be robust to violations of model assumptions. An alternative way to estimate the sampling distribution 

of a statistic is by resampling the data itself using jackknife [125] or bootstrap [38] procedures. The 

latter is receiving more and more attention. Textbooks describing the bootstrap include LePage and 

Billard [75], Efron and Tibshirani [39] and Hjorth [64]. 

The bootstrap method might be the simplest technique for simulating the probability distribution 

of any statistic. Bootstrapping amounts to resampling a record, with replacement, to generate B boot­

strap samples, from which one can compute B estimates of a given statistic, leading to an empirical 

probability distribution of the statistic. Suppose we wish to estimate the cumulative distribution func­

tion of a statistic & that is estimated from a given random sample xt, t = 1, • • • . n, which we denote 

X. A bootstrap sample Xi is generated by resampling n values from the observed data. That is, each 

observation z, is resampled, with replacement, with an equal probabiUty of 1/n. A total of B bootstrap 

samples Xi, i = 1, • • • , B is obtained. Each bootstrap sample Xi yields a bootstrap estimate of the 

statistic 9 leading to the B bootstrap estimates 9i, i = 1, • •• , B. The empirical distribution of the 

Si's is used to approximate the distribution of 9. This practice is valid given the assumption that the 

elements of X are independently identically distributed. However, time series data are usually not HD, 

so the resampling algorithm requires modification. 

In this chapter, the residual bootstrap method that aims at non-HD type of data is conducted. 

If there is a parametric model that can fit the data with HD residuals, the bootstrap method can be 

applied to the residuals. The implementation steps are as follows. First, the time series is estimated by 

a parametric model and the residuals are obtained. Second, the residuals are resampled. Finally, boot­

strap replicates of the time series data are constructed from the estimated model and the bootstrapped 

residuals. 

We use Monte Carlo simulation to compute the size and power of the bootstrap tests. The first 

step of the Monte Carlo simulation is to specify the parameters and initial conditions of the model 
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sequence. The next step is to generate from a given distribution pseudo-random numbers. Usually the 

random numbers are designed to be normally distributed and serially uncorrelated so that they can 

represent an HD sequence. The third step is to construct the model sequence by using the parameters, 

initial conditions and random numbers. The fourth step is to repeat steps two and three thousands of 

times. The reason to do the repetition for so many times is to ensure that the statistical properties of 

the constructed sequence are in accord with the true distribution. One limitation of the Monte Carlo 

experiment is that it is specific to the assumptions used to generate the simulated data. If the sample 

size, the parameters or the initial conditions are changed in the data generating process, a new simulation 

needs to be performed. However, if the change is small, we can expect the results to hold approximately 

by continuity. 

3.2 Models and Tests 

For the linearity tests, the model is linear under the null hypothesis and the alternative can be a 

nonlinear model that depends on the specific test. We will specify the linear model as the AR model: 

p 
= A + 53<Pi2/t-i-t-£e, (3.10) 

t=i 

where the roots of the polynomial 1 — £f=1 4>iZ% = 0 lie outside the unit circle and {ec} ~NlLL)(0, cr2). 

Note that  f i  is  the intercept  of  the model;  the mean of the stat ionary series {y t  \  is  f i ( l  — 5Zf= l  <Pi)~ l -

Since the null model is AR(p), we will have et = yt— (i—53<=i QiVt-i and #2 = [ M 0P ]'-

So 

Z2t = — [ 1 2/t-i • • • 2/t-p ]' (3.11) 

for each LM test, and zu will be determined by the specific alternative model. We will consider some 

major representatives of nonlinear time series models: the bilinear (BL) model, exponential autoregres­

sive (EAR) model, threshold autoregressive (TAR) model, smooth transition autoregressive (STAR) 

model (including Exponential STAR (ESTAR) and Logistic STAR (LSTAR) model), and autoregressive 

conditional heteroskedastic (ARCH) model. 
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3.2.1 The BL Model and BLT Statistic 

The BL model adds the cross-product terms of y t~i and £>__,• to a linear model to account for the 

nonlinearity. For the BL(p, m, k), the model structure can be written as 

m k 
ÎIt = P + ̂ 2 + ̂  + £t< 

i=l J=1 
(3-12) 

i=l 

where Cm* # 0. 

With 0i = [ cn Ci2 • • • Cm* ]' = 0 as the null hypothesis, the LM statistic testing the linear 

null (3.10) against the bilinear model (3.12) can be constructed with 

Zlt 

m k 

^ | ye - M - 53 •PtSe-i - 53 53 
J  8  , = 0  

= — [ 2/t-ift-i 2/t-ift-2 2 / t — t  (3.13) 

Saikkonen and Luukkonen [106] derive the necessary and sufficient conditions for the BLT(m, k) 

(the LM test for the BL(p, m, k) model) to be well defined. In this chapter, we will assume <Pp f 0 and 

k < p + 1. With this restriction, the BLT statistic will be distributed asymptotically as a Xm* under the 

null hypothesis since the dimension of the vector Q\ is mk. 

3.2.2 The EAR Model and EART Statistic 

For the EAR model such as 

p 

ye = ̂  + 53 QiVt-i + [exp (~yyf-d) - l] 53 f fiyt-i + £t 
t=l i=l 

with 7 # 0, 

(3.14) 

(^)7=0 
= {é {* ~ M ~ - t«p (-"£-*) - 53 }} 

= exp (-yyt-d) 53 9iyt-<yf-d 
L i=l 

p 

— ^ ' 9iyt—iî/t—d-

J 7=0 
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Therefore the EART(p) — the LM test statistic against EAR(p) — can be constructed with 

zit = - [ ye-2y?_d yt-Py?-d ]'. (3.15) 

which has an asymptotic xP distribution under linearity. 

3.2.3 The TAR Model 

Here we consider a simple two-regime TAR model, which can be expressed as 

where «pj1* # for some i = 1, • • • , p. There are two regimes and in each regime there is an AR(p) 

process. 

Note that there is no corresponding LM test statistic for the TAR model. This is because the 

likelihood function is not difierentiable with respect to the threshold parameter c. 

3.2.4 The STAR Model and START Statistic 

The ESTAR(p) model has the general form 

yt = Pi + yi <Puyt-i + fps + yi <j>nyt-i J X |l - exp |-7 (ye-d - c)2j } -h et, (3.17) 
i=i \ 1=1 J 

and the basic LSTAR(p) model can be written as 

yt = Ml + yi'Pijyt-i + f Ma + y^>2iyt-« ) x f{l + exp [—z* (yt-d — c*)]} 1 — 0.5J -r £>• (3.18) 
1=1 V 1=1 / 

Under the null hypothesis 7 = 0 or 7* = 0, both will become a linear AR model. 

To construct the LM test for the ESTAR model (ESTART), we have 

(Sr)  ̂ -
= I - (,2 + 53 GXP [-7 (yt-d - c)2j (yt-d - c)21 

= - ̂ 2 +• 53 (yt-d - c)2 . 
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After transformation, the concise form of zu for ESTART(p) is 

Z\t — [ yt—ll/t—d Vt—2Vt—d Vt—pl/t—d ZZt—l2/t—d —22/t—d ' —P^t —d ] (3.19) 

The ESTART(p) statistic has an asymptotic x|P distribution under linearity. 

For the LM test for the LSTAR model (LSTART), it can be shown that 

= - + 53 Vnyt-ij 

1 +exp[-7* (yt-d -c*)]} 1 -0.5 
7*=0 

exp [-7* (yt-d ~ c")| (yt-d - C' 

{1 + exp [-7* (yt-d -c-)]} 

(yt-d — c) 

"} 
/ T=0 

Therefore, the LM test against LSTAR(p) model can be obtained with 

z\t =  —  [  yt-iyt-d yt-2Vt-d yt-pyt-d ] ' .  

Terasvirta [115] shows that the LM tests for LSTAR based on the above regressions may not have 

much power for alternative with ^ 0. He suggests constructing an LM test statistic for an auxiliary 

regression that is based on third order Taylor expansion but adjusted for small samples. The auxiliary 

regression is 
p P 

yt = m + 53 5>>yt-;yt-d + 0?yt-d + -1 (3.20) 
i= 1 j—1 

with null hypothesis 0U = 012 = • • • = 0lp = 02 = 0, so the ztt becomes 

zu =  -  [ y t - iy t -d  y t -2Vt-d  • • •  y t -pVt-d  y?_d ] ' ,  (3-21) 

which is equivalent to solving zu by adding the third order differentiation term to the original 

formula of zu so that 

7*=0 

In the following LM testing of the LSTAR (p) model, vector z\t will be in the form (3.21), therefore 

the LSTART(p) statistic has an asymptotic Xp+i distribution if the null is true. 
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3.2.5 The ARCH Model and ARCHT Statistic 

A different approach is required to calculate the LM statistics for ARCH(p. m )  type models 

t/t = M + -r Vt (3.22) 
i=l 

with 

V t  = ct VÂ7 = ê( ao + aj vt-j » (3.23) 
j=i 

where {et} ~NLLL)(0,1). 

As stated in Breusch and Pagan [14], vt will be distributed as NHD(0. ht = z'ta) with -t = 

[ 1 ur-i •• uf_m ] and a'= [ a0 at am ]. So 

dh t  

H a = Z t '  

The log likelihood function (omitting the constant term) is 

T , T 

^(a) = -5^ log A e l"f-

Therefore, 

£=l C=L 

and 

where f t  = h~ lvf — l.4 

It also can be proved that 

t=i 

t=l 

dL dL = 0 

4The result is obtained as follows: 

dad& d(3da? 

d L  
- 3 (~* Zh '•+(-Î E *.-».) ° ; f *.-»'!/•+{E v'- (TV-;) 
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where 0 = [ M <Pi "Pp ]' is the coefficieat vector of the AR model. 

So, referring to section 3.1.1, under the null = ao = - - • = = 0, the LM statistic for an 

ARCH(p, m) model is 

ARCHT(p,m) = |^?J,j 

with z t  = [ 1 vf-i • • • ] ' ,  ft  = -  1 = (T-1 £Li "?) ^ -  1. v?-, = ?t-t> Vi under 

the null restrictions. Asymptotically, the ARCHT(m) (LM test statistic for ARCH(p.m) model) follows 

a Xm distribution under the null hypothesis. 

3.3 Power Comparison of LM Tests using Monte Carlo Method 

In this section, Monte Carlo simulations are used to compare the power of various LM tests for 

different nonlinear time series data. The null model is restricted to be AR(1). The alternative models will 

be the bilinear model, the exponential autoregressive model, the threshold model, the smooth transition 

autoregressive model and the autoregressive conditional heteroskedastic model, which are constructed 

according to (3.12); (3.14); (3.16); (3.17) and (3.18); and (3.22) and (3.23), respectively. Moreover, the 

BL, EAR, TAR, STAR models are discussed for the lag parameter d = 1, and the ARCH model is 

limited to cases when m = 1. 

As for the test statistics, due to the identification condition k < p+1 of the BLT(m, k) statistic, the 

BLT(1,1) and the BLT(2,2) statistics will be used; the EART(p) statistic is reduced to the EART(l) 

statistic; the ESTART(p) and LSTABT(p) statistics will be the same for p — 1, which we denote as 

START(l); and the ARCHT(m) statistic becomes ARCHT(l). Therefore, there will be five LM test 

statistics used in the chapter. The power properties of the five statistics will be investigated by using 

the asymptotic critical values (ACV). A 5% significance level is used throughout the discussion. 

The simulations are performed using the computer language FORTRAN. Subroutines and functions 

of the NAG FORTRAN library are used extensively in the programming. The number of replications 

for the Monte Carlo simulation is 10,000. The sample sizes T = 50, 100, 200 are used and represent 

typical lengths of economic time series. 
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Table 3.1: Empirical powers of LM tests against BL(1,1,1) using ACV 

(i). £i=2, <p=-0.9, c=-0.1, cr~—l 
Statistics T=5U T=1(W 1=200 
BLT(1,1) 
BLT(2,2) 
EART(l) 
START(l) 
ARCHT(l) 

44.3 73.1 94.7 
27.3 53.0 84.3 
12.9 8.8 9.4 
22.1 26.1 39.9 
7.9 13.8 24.0 

(ii). /x=l, <p=0.3, c=-0.2, er*=l 

Statistics 1=51) T=1UU T='JUU 
BLT(1,1) 
BLT(2,2) 
EART(l) 

STAKT(l) 
ARCHT(l) 

39.1 69.9 95.2 
23.8 50.3 85.2 
36.1 63.0 91.1 
36.0 61.0 91.1 
8.1 18.4 36.4 

(iii). (i=0, 0=0.6, c=0.7, <r*=1 
Statistics 1=50 r=iuu r=juu 
BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

37.0 44.5 50.7 
63.3 75.1 83.9 
40.7 51.0 62.5 
65.2 73.8 81.9 
60.9 88.7 98.9 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) 10,000 independent realizations of the BL(1,1,1) model as equation (3.12). 

3.3.1 Simulating BL Models 

Three different BL(1,1,1) models are specified according to equation (3.12), differing according to 

the parameter values of /i, <j> and c. The test statistics for the three series are listed in Table 3.1. For 

case (i), the empirical power of the EART(l) statistic is smaller when T = 100 or T = 200 than when 

T = 50, which is quite abnormal since usually the empirical power of a test will increase with sample 

size. This could simply be due to approximation errors inherent in simulation-based measurements. For 

c values near zero (case (i) and case (ii)), the BLT tests have higher rejection frequencies than the other 

tests and the BLT(1,1) has higher powers than the BLT(2,2). However, in case (iii) when c is relatively 

large, the BLT(1,1) test is the worst, the BLT(2,2) test is better than BLT(1.1) and the EART(l). 

STAKT(l) and ARCHT(l) tests have high empirical powers against a BL(1,1,1) sequence. 

Guegan and Pham [54] show that 

* For a BL(1.1,1) model, the theoretical power of BLT(1,1) is a function of <p, c and a2. 

* The BLT(1,1) test is a local test in the sense that it is more efficient for testing a BL(1,1,1) 
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alternative near the null hypothesis than far from the null hypothesis. 

We reproduce Guegan and Pham's empirical power study of the BLT(1,1) test against BL(1,1,1) 

with the coefficients p = 0, cr2 = 1 and T = 200. The number of replications is increased from 500 to 

10,000. The parameter <t> takes the values —0.9, —0.6, —0.3, 0.3, 0.6, 0.9, and the parameter c varies from 

—0.9 to 0.9 with a step of 0.1. Also we extend the empirical power study from the BLT(1,1) to include 

the BLT(2,2), EABT(l), START(l) and ARCHT(l) tests against BL(1,1,1). Table 3.2 tabulates and 

Figures 3.1, 3.2, 3.3, 3.4, and 3.5 depict the power curves for the five LM tests. We can see that: 

* The two BLT tests reach their highest power at c around ±0.2. For c from 0 to ±0.2, the power of 

BLT(1,1) increases faster than the power of BLT(2,2). For c larger than ±0.2, the power of BLT(1.1) 

has lower level and bigger variance (within-curve and between-curve) than that of BLT(2,2). 

* The power of the ARCHT(l) test is increasing as the absolute value of c gets larger and finally 

the power of ARCHT(l) test is larger than that of BLT tests, although for smaller values of c, the 

performance of the ARCHT(l) test is worse than that of the BLT tests. 

* The shape of the empirical power curves of START(l) is quite similar to that of BLT(1,1) overall. 

However, the autoregressive coefficient <p has an effect on the shape of the graph. When <p equals to 

±0.9, the power is always increasing as the absolute value of c increases, while when 0 takes other values, 

the empirical powers reach their maximum at around c = ±0.3. 
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Table 3.2: Empirical power curves of LM tests against BL( 1,1,1) 

<Ac -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 Ô.1 0.2 0.3 Ô.4 0.5 0.6 0.7 0.8 0.0 

tin, 76.8 76.5 77.4 79.7 85.8 93.8 99.1 87.5 5.0 87.9 99.2 94.2 85.4 80.6 77.9 77.1 77.4 77.9 
-0.6 70.5 74.5 81,6 90.5 96.8 99.4 99.9 97.6 57.7 4.8 56.6 97.9 99.9 99.2 96.4 90.6 82.1 74.4 71.5 
-0.3 66.4 74.2 85.8 95.2 99.0 99.9 99.9 95.9 49.3 5.0 49.4 96.0 99.9 99.9 99.0 95.4 85.8 74.6 65,9 
0.3 50,9 52.3 61.6 77.9 91.6 98.6 99.8 95.7 49.5 4.6 48.9 95.8 99.8 98.7 92.0 77.1 61.8 52.6 51.0 
0.6 55.5 52.9 51.8 55.3 69.8 90.0 98.7 98.1 56.0 4.8 57.0 97.8 98.8 89.3 69.6 55,5 52.7 53.3 56.9 
0.9 65.5 
ni t/o ox 

65.6 64.4 61.0 56.4 54.4 68.4 94.5 88.3 4.5 88.5 94.1 69.1 55.4 56.3 62.1 65.0 66.4 66.5 
ULIl J.J) 
-0.9 94,3 92.7 91.6 90.6 91.4 93.4 96.5 98.4 71.5 5.0 71.6 98.5 96.7 92.9 90.9 91.0 91.7 92.8 94.5 
-0.6 90.8 92.3 94.9 97.8 99.4 99.9 99.7 91.6 37.1 4.5 35.9 91.4 99.6 99.8 99.2 97.7 94.7 92.2 91.6 
-0.3 90.0 93,4 97.1 99.5 99.9 100.0 99.4 86.7 29.2 4.8 30.3 86.8 99.5 100.0 99.9 99.4 97.1 93.3 89.8 
0.3 84.4 85,5 89.3 95.0 98.8 99.9 99.6 87.2 29.7 4.6 28.9 87.9 99.7 99.9 98.7 94.8 89.3 85.6 84.6 
0.6 87.8 86.3 85.4 85.9 90.1 97.1 99.6 93.8 35,4 4.7 35.9 93,1 99.6 96.8 91.0 86.2 85.1 86.4 87.8 
0.9 94,0 

P AIIT/1 \ 
92.6 91.8 89.7 87.6 83.8 87.9 96.6 75.4 4.5 76.4 96.9 87.9 85.2 86.8 90.4 91.9 93.0 93.1 

tAIU 11) 
-0.9 85.8 85.2 85.0 82.3 78.6 69.9 54.6 32.9 12.2 4.8 11.4 32,9 54.0 69.3 79.0 83.1 85.1 86.1 86.0 
-0.6 62.9 60.3 58.0 57.0 57.2 55.1 46.4 28.1 9.4 4.7 9.8 28.6 46.2 55.5 57.2 57.4 58.7 60.2 64.8 
-0.3 49,8 48.1 51.3 58.3 64.3 64.9 51.6 27.2 8.9 4.7 8.9 28,0 51.6 64.7 65.2 58.6 51.2 47.3 49.1 
0.3 54.6 48.6 40.3 33.3 31.5 40.7 44.3 29.3 10.1 4.7 9.9 28.9 44.2 40.7 31.7 33.0 39.6 49.0 53.6 
0.6 71,5 69.0 62.7 51.2 34.1 18.2 18.5 20.8 8.1 4.6 8.8 20.2 18.5 18.2 34.2 51.1 62.0 67.9 71.2 
0.9 86.8 88.0 87,4 86.8 83.8 74.9 50.5 11.8 5.2 4.1 4.7 12.2 49.8 75.2 84.5 87.3 88.0 87.6 86.3 
m i niu 1i 
-0.9 02.6 91.7 90.5 88.9 86.3 82.1 76.6 71.6 39.0 4.7 37.8 70.8 76.5 81.1 86.0 88.8 91.0 92.1 92.8 
-0.6 81.9 81.7 83.3 87.6 92.5 96.5 97.5 88.1 38.2 4.9 37.8 88.2 97.6 96.0 92.1 87.2 83.5 81.3 83.5 
-0.3 80.4 84.8 91.4 97.3 99.3 99.9 99.6 91.2 38.1 5.1 38.9 91.5 99.6 99.9 99.5 97.2 91.6 84.5 80.4 
0.3 81.7 84.1 89.9 95.7 99.2 99.7 99.0 87.7 35.6 4.4 34.C 87.5 99.0 99.7 99.1 95.9 89.6 84.4 81.1 
0.6 84.5 82,5 81.9 84.5 90.6 95.8 95.6 81.6 31.9 4.4 32.5 80.2 95.1 95.5 90.5 84.6 81.9 81.6 84.6 
0.9 92.8 92,2 90.4 88.6 87.1 84.6 80.4 67.8 31.8 5.2 32.7 68.1 80.6 84.0 87.4 89,0 90.2 92.3 92.6 
ARCHT(l) 
-0.9 99.5 99,4 98.8 98.1 96.6 94.9 90.3 67.4 19.1 3.7 18.8 68.6 89.6 95.0 96.6 98.1 98.9 99.3 99.6 
-0.6 99,7 99.7 99.6 99.5 98.7 95.0 78.9 42.4 10.5 4.1 10.0 41.4 78.4 94.7 98.8 99.5 99.6 99.7 99.8 
-0.3 100.0 100,0 100.0 99.8 99.2 95.1 75.6 37.0 8.4 3.8 8.9 36.6 75.5 94.7 98.8 99.5 99.6 99.7 99.8 
0.3 99.8 99.7 99.6 99.4 98.5 93.8 74.2 35.3 9.2 3.7 8.4 36.8 75.4 94.0 98.6 99.4 99.5 99.8 99.8 
0,6 99.6 99.3 98.8 97.9 96.4 91.8 77.7 40.7 9.5 3.8 9.4 40.2 77.6 92.1 96.1 97.8 98.7 99.3 99.7 
0.9 99.6 99.5 98.9 98.4 97.2 95.3 90.7 73.3 20.8 3.4 20.6 73.5 90.6 94.9 96.8 98.2 98.9 99.3 99.6 

Note: 1) 10,000 independent realizations of the BL(1,1,1) model as equation (3.12) when /t = 0, a2 = 1 and T = 200. 
2) For c = 0, the null model is true, so the empirical rejection percentage should be close to the test's nominal 5% level. 
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Figure 3.1: Empirical power curves of BLT( 1,1) against BL( 1,1,1) 
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Figure 3,2: Empirical power curves of BLT(2,2) against BL( 1,1,1) 
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Figure 3.3: Empirical power curves of EART(l) against BL( 1,1,1) 
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Figure 3.5: Empirical power curves of ARCHT(l) against BL( 1,1,1) 
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3.3.2 Simulating EAR Models 

The test results for data generated by the EAR(l) model are tabulated in Table 3.3. From the 

table, we can see that the model coefficients do not have much effect on the test performance, while the 

value of a2 often makes a large difference. The five LM tests reject the null hypothesis more frequently 

when a2 is smaller. One possible explanation could be that the small variance makes it easy for a test to 

detect the nonlinearity from the model mean. However, the EART(l) almost always has higher power 

than the other tests, regardless of the value of a2. The START(l) comes next, with empirical powers 

quite close to those of the EABT(l). The BLT test statistics will have good power against the EAR(l) 

model under some situations. The ARCHT(l) seems to never work well for EAR models with empirical 

powers very close to 5%, the nominal significance level. 

An attempt to plot the empirical power curves of the five LM tests against the EAR(l) model is 

also made here (see Table 3.4, and Figures 3.6, 3.7, 3.8, 3.9, and 3.10). However an LM test can be 

invalid for EAR model when \<p — 0\ > 1. Also, the plots show that near the region that the LM test 

does not exist, there tend to be some irregular jumps in the power levels. 

The simulated EAR model can be rewritten as 

y t  = ( < p - 9 ) y t - i  +exp (-y?-t) 9yt-i (3.24) 

Haggan and Ozaki's conditions for an EAR model like (3.24) to exhibit the limit cycle behavior is: 

(i). |<p — 9| < 1; 

(ii). <P> 1; 

(iii). ^ > 0 or < -1. 

Since the model is simulated with the parameter <p lying within the unit circle, condition (ii) is not 

satisfied. And when \<p — d\ > 1, the condition (i) is violated. So if |<p — Q\ > 1 the simulated model does 

not exhibit limit cycle. Moreover, for \<f> — 8\ > I, though the model is stationary when yt-i is small, 

it is explosive when yt-i takes large values. So when \<t> — 9\ > 1 the simulated EAR follows neither a 

limit: cycle nor limit point stationary, it actually diverges. That is probably the reason why there is no 

LM statistics when \<f> — 6| > 1. 
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Table 3.3: Empirical powers of LM tests against EAR(l) using ACV 

(i). n=Q, 0=0.3, 7=1. 0=0.9 

Statistics (r4 T=50 T=100 T=200 
BLT(1,1) 0.36 6.9 5.0 5.3 

1 5.4 4.5 4.4 
BLT(2,2) 0.36 5.2 5.5 6.3 

1 4.2 4.4 4.7 
EART(l) 0.36 26.7 52.0 82.9 

1 12.3 22.2 42.1 
START(l) 0.36 22.4 43.5 75.5 

1 12.7 20.1 35.8 
ARCHT(l) 0.36 2.7 6.1 11.1 

1 1.9 3.1 4.0 
(ii). /t=0.3, 0=0.3, 7=1, 9=0.9 

Statistics a* T=50 T=100 T=200 
BLT(1,1) 0.36 15.0 23.7 38.9 

1 6.3 6.3 7.9 
BLT(2,2) 0.36 9.1 13.8 23.8 

1 5.1 5.1 5.5 
EAitT(l) 0.36 31.9 59.5 87.5 

1 12.9 23.0 41.7 
STAKT(l) 0.36 25.4 49.7 80.9 

1 12.3 19.4 35.2 
ARCHT(l) 0.36 2.6 5.6 9.5 

1 1.9 2.9 3.8 
(iii). /x=l, 0=0.3, 7=1, 9=0.9 

Statistics a* T=50 T=100 T=200 
BLT(1,1) 0.36 38.4 63.1 88.0 

1 11.6 16.3 26.0 
BLT(2,2) 0.36 24.1 46.7 79.2 

1 8.4 9.8 15.8 
EAKT(l) 0.36 42.2 65.7 90.1 

1 15.2 22.8 37.9 
STABT(l) 0.36 42.4 66.0 90.6 

1 13.0 17.9 30.8 
ARCHT(l) 0.36 2.5 4.1 6.1 

1 1.8 2.7 3.5 
The empirical powers are in %. 
The significance level is 5%. 
10,000 independent realizations of the EAR(l) model in equation (3.14) 

Note: 1) 

s
2i 
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Table 3,4: Empirical power curves of LM tests against EAR(l) 

M -0.0 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5.5 5.4 5.2 5.2 5.3 5.4 5.2 5.4 5.0 4.9 NA NA NA NA NA NA NA NA 
-0.6 G,? 6,4 5.9 5.4 5.3 5.3 5.2 5.1 5.1 5.2 5.0 4.9 4.9 4.8 NA NA NA NA NA 
-0.3 8.2 7.0 6.2 5.7 5.5 5.5 5.4 5.2 5.0 5.2 5.3 5.2 5.0 4.7 4.5 4.4 4.8 NA NA 
0.3 NA NA 8.3 5.7 5.6 5.4 5.1 5.0 4.9 4.8 5.0 5.3 5.3 5.2 5.3 5.4 5.3 5.2 4.8 
0.6 NA NA NA NA NA 8.3 5.1 5.0 4.9 4.9 5.0 5.2 5.2 5.5 5.8 5.9 5.9 5.8 5.7 
0.9 NA 
nr tyo o\ 

NA NA NA NA NA NA NA 8.4 5.0 5.0 5.1 5.3 5.4 5.6 6.0 6.2 6.5 6.4 

m 5.1 5.1 5.2 5.1 5.0 5.0 4.9 4.9 4.8 8.6 NA NA NA NA NA NA NA NA 
-0.6 5.7 5.2 4.9 4.9 4.9 4.8 4.9 4.7 4.6 4.7 4.7 4.6 4.7 8.6 NA NA NA NA NA 
-0.3 6.7 6.0 5.3 5.0 5.0 4.9 4.9 4.8 4.7 4.6 4.5 4.4 4.4 4.4 4.5 4.6 8.5 NA NA 
0.3 NA NA 10,9 5.4 5.2 5.1 4.8 4.6 4.5 4.5 4.5 4.7 4.8 4.7 4.8 4.6 4.5 4.4 4.3 
0.6 NA NA NA NA NA 11.0 5,1 4.7 4.7 4.4 4.4 4.4 4.5 4.5 4.8 5.0 5.0 5.0 4.9 
0.9 NA 

Ci A DT/1\ 
NA NA NA NA NA NA NA 11.1 4.9 4.7 4.6 4.5 4.6 4.7 5.0 5.0 5.2 5.3 

tiAltl (1; 
-0.9 52.7 43.7 34,6 26.9 19.4 14.0 9.9 7.1 5.1 4.4 43.0 NA NA NA NA NA NA NA NA 
-0.6 51.3 43.1 35,2 27.9 21.4 15.4 11.0 7.8 5.6 4.3 3.8 3.5 3.5 42.7 NA NA NA NA NA 
-0.3 42.0 37.6 31.6 25.2 19.9 15.0 10.7 7.6 5.8 4.9 4.8 5.4 6.8 7.6 7.4 5.3 42.4 NA NA 
0.3 NA NA 49.0 6.0 7.1 7.6 6.7 5.5 4.6 4.7 5.7 7.8 11.0 15.0 20.1 26.7 32.8 38.6 42.2 
0.6 NA NA NA NA NA 49.6 4.0 3.6 3.7 4.0 5.1 7.5 10.9 15.1 21.2 28.5 36.4 44.5 52.6 
0.9 NA NA NA NA NA NA NA NA 50.4 4.6 5.0 6.6 9.7 14.3 20.4 27.4 35.7 44.8 53.6 
ESTAR(l) 
-0.9 43.4 34.9 27.4 20.6 15.4 11.3 8.2 6.2 5.0 4.4 47.4 NA NA NA NA NA NA NA NA 
-0,6 41.0 34.4 28.3 22,0 16.6 12.4 9.2 7.0 5,5 4.9 4.5 4.2 4.1 46.7 NA NA NA NA NA 
-0.3 30.3 27.4 23.2 19.3 15.3 11.6 8.9 7.0 5.8 5.1 5.3 6.3 7.1 7.8 7.2 5.2 46.3 NA NA 
0.3 NA NA 74.1 6.5 5.6 5.5 4.9 4.4 4.4 4.7 5.5 6.8 8.9 12.3 16.7 21.3 26.7 32.2 36.1 
0.6 NA NA NA NA NA 74.7 5.5 3.8 3.6 4.0 4.9 6.6 9.2 12.6 16.7 22.0 28.9 36.1 43.5 
0.9 NA 
A DPUT/1 \ 

NA NA NA NA NA NA NA 75.2 5.8 5.3 6.5 8.6 11.6 16.1 21.3 28.0 35.7 44.0 
AlvtliHl) 
-0.9 4.3 4.1 4.0 4.0 3.9 3.9 3.8 3.9 4.0 4.1 4.2 NA NA NA NA NA NA NA NA 
-0.6 4.4 4.3 4.1 3.9 3.8 3.8 3.6 3.7 3.7 3.8 3.8 3.9 4.1 4.2 NA NA NA NA NA 
-0.3 4.1 4.2 4.2 4.0 4.0 3.9 3.8 3.8 3.7 3.8 3.8 3.8 3.8 3.9 3.9 4.0 4.3 NA NA 
0.3 NA NA 4.4 3.7 3.6 3.8 3.7 3.8 3.8 3.8 3.9 4.0 3.9 4.0 4.1 4.1 4.1 4.1 4.1 
0.6 NA NA NA NA NA 4.3 3.8 3.7 3.8 3.8 3.8 3.9 3.9 3.9 3.9 4.0 4.2 4.3 4.3 
0.9 NA NA NA NA NA NA NA NA 4.4 4.0 4.0 3.9 3.9 4.0 4.0 3.9 4.1 4.1 4.3 

Note: 1) 10,000 independent realizations of the EAR(l) model in equation (3.14) when /t = 0, 7 = d = a2 = 1 and T = 200. 
2) For c = 0, the null model is true, so the empirical rejection percentage should be close to the test's nominal 5% level. 
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Figure 3.6: Empirical power curves of BLT(1,1) against EAR(l) 
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Figure 3.7: Empirical power curves of BLT(2,2) against EAR(l) 
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Figure 3.8: Empirical power curves of EART(l) against EAR(l) 
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Figure 3.9: Empirical power curves of START(l) against EAR(l) 
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Figure 3.10: Empirical power curves of ARCHT(l) against EAR(l) 
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3.3.3 Simulating TAR Models 

As mentioned before, the TAR model does not have a corresponding LM test. But a comparison 

among the five test statistics in Table 3.5 still shows some interesting features. First, the intercept plays 

a role in the test performance. In cases (i), (ii) and (iii), when the intercepts are set to zero, the BLT and 

the START statistics are better than the EART and ARCHT statistics; in cases (iv) and (v), when the 

intercepts are not equal to zero, the EART and the START statistics are better than the BLT statistics. 

The farther apart fil and are, the more frequently the null will be rejected by the tests. This can 

be clearly seen from the comparison of cases (iv) and (v). Second, the larger the difference between 

0t and 021 the more frequently the null will be rejected by the tests. We can see from Table 3.5 that 

the rejection percentages in (i) and (ii) are higher than that in (iii). Third, if the variances of the two 

regimes are different, the ARCHT test will have high power since it responds to heteroskedasticitv of 

errors. This can be seen by comparing (v) and (vi). Last, note also that for all six cases, the START 

statistic performs about as well or better than the alternatives. 

Empirical power curves are not provided for the TAR model since for the TAR model there are too 

many coefficients to be plotted in two-dimensional plots. For the same reason, empirical power curves 

are not illustrated for the STAR and ARCH models. 

3.3.4 Simulating STAR Models 

Here we discuss two types of STAR models, the ESTAR and the LSTAR models. The results are 

in Tables 3.6 and 3.7, respectively. 

For the ESTAR model, we want to see the importance of the values of the intercepts and fin and 

the coefficient 7 of the ESTAR model on the five tests' power performance. As 7 increases, the powers 

of the tests decrease. When it reaches 10,000, there is almost no power for any of the five tests. This 

finding complies with the theory that ESTAR is approximately a linear model as 7 —• 00. As mentioned 

before the ESTAR model is reduced to an EAR model when f^ = 0. We find in cases (i), (ii) and (iii), 

that the EART is better than the START and in cases (iv), (v), (vi), the START is better than the 
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Table 3.5: Empirical powers of LM tests against TAR(2;1,1) using ACV 

(i)- Mi—Ms—0, 0i—0.3, 
=-0.6, c=0.2, <r^=<r^=0.49 

(ii). —0, 0i—-0.3, 
09=0.6, c=0.2, <7?=<t§=0.49 

Statistics T=5U T=1UU 1=200 Statistics 1=50 T=1U0 T=200 
BLT(1,1) 
BLT(2,2) 
EAKT(l) 

START(l) 
ARCHT(l) 

39.0 67.3 93.3 
21.8 45.2 81.3 
11.3 15.5 24.2 
32.8 59.6 90.4 
4.6 8.5 16.2 

BLT(1,1) 
BLT(2,2) 
EAKT(l) 

START(l) 
ARCHT(l) 

32.7 62.5 90.0 
17.2 41.2 76.4 
9.0 15.4 27.5 

29.4 59.4 90.0 
4.3 8.4 15.2 

(iii). Mi——0, 0i—0.3, 
0-2=0.6, c=0.2, <7?=<To=0.49 

(iv). Hi—1, Ms—0.5, 0i—0.3, 
0o =-0.3, c=0.2, <T?=<T9=0.49 

Statistics T=5U l'=l(J0 T=200 Statistics T=5U T=10U 1=200 
BLT(l.l) 
BLT(2,2) 
EAJRT(l) 

START(l) 
ARCHT(l) 

7.6 13.8 22.6 
5.1 8.1 13.9 
5.5 5.3 5.6 
7.2 10.8 19.5 
2.1 3.6 4.5 

BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

6.3 6.6 8.9 
6.3 6.2 7.6 
9.0 9.2 11.5 

42.4 24.8 17.5 
2.7 4.1 5.5 

(v). —1, /*2—0.5, 0i—0.3, 
02 ="0.3, c=0.2, <r?=o,=0.49 

(vi). fi\—li M2—-0.5, 0j—0.3, 
02 =-0.3, c=0.2. <t?=0.49,<t§=0.04 

Statistics T=5U 1=100 1=200 Statistics T=50 T=100 T=200 
BLT(l.l) 
BLT(2,2) 
EABT(l) 

START(l) 
ARCHT(l) 

10.0 18.0 33.7 
8.5 15.4 33.9 

19.8 46.4 82.1 
39.9 52.8 82.0 
4.3 8.4 12.8 

BLT(1,1) 
BLT(2,2) 
EAKT(l) 

STABT(l) 
ARCHT(l) 

10.9 17.3 29.2 
14.6 22.4 36.9 
15.0 18.1 26.0 
46.8 43.9 50.1 
7.0 18.7 39.6 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) 10,000 independent realizations of the TAR(2;1,1) model in equation (3.16). 
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Table 3.6: Empirical powers of LM tests against ESTAR(l) using ACV 

(1). Mi=0, f*2=0, <p1=-0.5, 
00=0.0, 7=0.1 

(ii). (ix=0, Mo=0, 0i =-0.5, 
02=0.6, 7=1 

Statistics T=5U 1'=1U0 T—JUG Statistics r=du 1=100 1=200 
BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

7.0 7.8 7.4 
5.3 6.2 6.1 

11.4 18.0 31.2 
10.8 14.5 24.5 

2.7 4.5 6.5 

BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

5.4 5.9 5.7 
4.4 4.7 4.9 

11.1 17.0 27.6 
9.1 12.8 21.6 
1.8 3.1 4.0 

(iii). Mi=0, ^2=0, 01 =-0.5, 
02=0.6, 7=10 

(iv). Mi=0, M2=° 1 01 =-0.5, 
02=0.6, 7=10,000 

Statistics T=5U 1=100 T='200 Statistics T=5U 1=100 T=2U0 
BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

5.1 5.3 5.0 
4.4 4.5 4.8 
5.5 5.3 5.1 
5.3 4.9 5.1 
1.8 3.2 ' 3.8 

BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

5.1 5.3 5.0 
4.4 4.6 4.7 
5.6 5.3 4.9 
5.4 4.9 5.2 
1.9 3.2 3.8 

(v). Ml=l, M2=-l» 01 =-0.5, 
0o=O.6, 7=0". 1 

(vi). ^1=1, M2=-l, 0i =-0.5, 
0o=O.6, 7=1 

Statistics T=5U T=1U0 T='2U0 Statistics T=5U T=1U0 1=200 
BLT(1,1) 
BLT(2,2 
EART(l) 

START(l) 
ARCHT(l) 

7.5 8.2 7.9 
6.7 6.6 6.5 

10.1 12.6 20.1 
11.9 17.0 28.4 

2.9 4.8 7.0 

BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

15.9 27.6 45.9 
9.3 16.4 29.6 
8.0 8.7 12.5 

31.2 57.8 87.0 
2.9 6.3 11.2 

(vii). Mi=l. M2=-l. 0i =-0.5, 
<Pi=Q.o, 7=10 

(viii). ^i=l, M2=-l> ©i=-0.5, 
02=0.6, 7=10,000 

Statistics T=50 T=1UU T='JU0 Statistics T=50 1=100 1=200 
BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

12.0 22.6 39.7 
6.8 12.0 22.3 
5.0 4.4 4.5 

12.2 22.4 39.1 
1.5 2.6 4.2 

BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

5.3 5.3 5.0 
4.2 4.5 4.8 
5.5 5.2 4.8 
5.3 4.8 5.1 
1.9 3.1 3.8 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) 10,000 independent realizations of the ESTAR(l) model in equation 

(3.17) with c=0, p=l, d= 1. 

EAST. The ARCHT performs poorly for the ESTAR model over the full range of coefficients, while the 

BLT tests have some power when the model is ESTAR model but not for the EAR model. The best 

candidates for testing the ESTAR model would be the START and EART. 

For the LSTAR model, the ARCHT(l) is not good overall with regard to power. The BLT type 

tests are pretty good, however the START is the best. The effect of 7* on the test power is contrary 

to that for the ESTAR model: the powers increase when 7* goes up. This is because with the LSTAR 

structure, the model is approaching a TAR model if 7* —• 00, showing abrupt nonlinearity. 
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Table 3.7: Empirical powers of LM tests against LSTAR(l) using ACV 

(i)- Mi—0, Mg—0, —0.3, 
0o=O.6, 7*=0.5 

(ii]. Mi=0, Ms=0, 01=0.3, 
09=0.6, 7*=10u 

Statistics T=5U T=1U0 1=21)0 Statistics T=5U 1'=1UU T='J(J0 
BLT(1,1) 
BLT(2,2 
EART(l) 

START(l) 
ARCHT(l) 

9.5 14.9 28.3 
5.8 8.5 16.2 
6.0 6.5 7.6 
7.8 11.7 21.7 
2.2 3.4 5.3 

BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

17.7 32.5 61.4 
9.7 18.2 41.3 
6.5 8.6 14.6 

14.8 28.0 56.8 
2.6 4.3 7.1 

(iii). Mi=l, M2=-l. 0i=O.3, 
09=0.6, 7'=0.5 

(iv). Mi=l, M2=-!. 01=0.3, 
02=0.6, 7*=10u 

Statistics T=50 T=1UU i='JUU Statistics T=50 1=100 1=200 
BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT (1) 

11.1 14.7 24.5 
7.6 9.2 15.7 
9.4 12.3 21.7 

27.5 20.6 25.1 
2.2 3.4 5.2 

BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

28.5 47.4 77.5 
17.2 32.8 65.8 
18.8 32.4 59.8 
48.2 62.0 87.3 
4.6 9.1 18.0 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) 10,000 independent realizations of the LSTAR(l) model in equation 

(3.18) with c"=0, p= 1, d=l. 

Table 3.8: Empirical powers of LM tests against ARCH(1,1) using ACV 

(i). £t=0, 0=0.4, ao=l, an =0.8 (u). m=3i 0=0.6, oro=l, ai=0.8 
Statistics T=50 T=100 1=200 Statistics T=5U 1=1U0 1=200 
BLT(1,1) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

22.9 31.5 40.0 
34.4 49.4 64.1 
21.7 28.0 37.8 
33.7 44.7 56.5 
56.8 90.6 99.7 

BLTfl.l) 
BLT(2,2) 
EART(l) 

START(l) 
ARCHT(l) 

20.8 25.3 33.7 
38.7 49.6 61.7 
36.1 30.2 34.7 
85.0 77.2 70.6 
57.5 90.8 99.7 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) 10,000 independent realizations of the ARCH(1,1) model in equation 

(3.22) and (3.23) with <r=l. 

3.3.5 Simulating ARCH Models 

By choosing different coefficient values for the model, we simulate several ARCH processes. The 

test results are included in Table 3.8. It seems that the choice of the linear coefficients does not affect 

the test power much. Breusch [13] provides a rationale for this; for a discussion, see Diebold and Pauly 

[35]. Among the five statistics, the ARCHT(l) consistently has the largest power, which is reasonable 

since the true data are generated according to the ARCH model. 
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3.4 Size and Power Comparison using Bootstrap Method 

In this section, size and power comparison of the five LM tests will be performed for different 

nonlinear models using bootstrap methods. For comparison, the general linearity test BDS test is also 

included. 

There are various methods of calculating BDS statistic using different computer languages or soft­

ware. Dechert compiles his program for the DOS operating system, LeBaron writes his program in C, 

Kanzler [67] bring forward an algorithm programmed in MATLAB, which provides a fast and correctly 

sized estimate of the BDS statistic. Here, Kanzler's MATLAB program is adopted for calculating the 

BDS statistic. So for each Monte Carlo simulated series, five LM tests and one BDS test (with e = 1.5<r 

and m = 2) are performed in MATLAB. Different from FORTRAN, which is a compiled language, 

MATLAB is an interpreted language, so it takes much longer time to run a job by MATLAB than by 

FORTRAN. In section 3.3, where the statistics are calculated by FORTRAN, the running time ranges 

from several seconds to around 30 minutes under a UNIX environment, where the server has a speed 

of 400 MHZ, 256 MB to 1 GB RAM. For example, running five LM tests for BL(1,1,1) with T = 100 

takes only a few seconds by FORTRAN in UNIX system, but about 3 days by MATLAB under the same 

environment. For series with length longer than 100, it is even difficult to produce a result by MATLAB 

in UNIX. That's because the bottleneck of running MATLAB is the CPU time, not the RAM, or the 

hard drive. So under the UNIX system with time-sharing characteristic, the excessive CPU requirement 

by complicated MATLAB programs is hard to satisfy and the programs often end up being idle and 

eventually killed before producing results. We run the MATLAB program on a PC with 1.7 GHZ speed, 

128 MB RDRAM. The situation improves a lot concerning running time. We are able to shorten the 

running time of LM tests for series with 100 observations from 3 days to 6 hours or so. For T = 200, the 

running time for five LM tests is around 12 hours, for one BDS test is about 23 hours, and for five LM 

and one BDS tests, it is approximately 24 hours. Comparing the time needed to run six tests and five 

tests, it seems that simply running five LM tests does not take too long, the majority of the 12 hours to 

run five LM tests is used by MATLAB to generate data and do the bootstrap. There is no doubt that 
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the BDS test is a time-consuming process. 

Table 3.9 compares the empirical sizes of the five LM tests and the BDS test using asymptotic and 

bootstrap critical values (BCV) at the 5% significance level. The critical values are good if the empirical 

sizes are near 5%. It is obvious that for all the tests, the empirical sizes by the bootstrap critical value 

are always near 5%, while the empirical sizes by the asymptotic critical values significantly deviate from 

5% for ARCHT(l) and, when the autoregressive coefficient <p approaches the unit circle for START(l). 

All of the empirical sizes by asymptotic critical value for the BDS tests are bigger than 5% for T = 25. 

To get an overall impression of the size performance of the two methods (i.e., asymptotic vs. bootstrap), 

the proportion of the empirical rejection percentages falling between 4% and 6% are examined. When 

T = 100, 31 out of the 36 bootstrap rejection rates fall within the range [4%, 6%] with a minimum of 

3.8% and a maximum of 6.2%. The corresponding rejection rates using asymptotic critical values range 

from 2.3% to 5.9% with a proportion of falling within [4%, 6%]. When T = 50, the proportions are 

gg and 5§, and the ranges are [1.9%,6.6%] and [1.4%,9.1%] for the bootstrap and asymptotic empirical 

sizes. When T = 25, the bootstrap empirical sizes range from 2.5% to 6.3%, among which §§ are in 

the range [4%,6%]. The sizes found from the asymptotic critical values are scattered between 1.0% and 

16.9%, and only 12 out of 36 are in the range [4%, 6%]. Therefore, the bootstrap method appears to 

have better size properties than the asymptotic method. 

Tables 3.10, 3.11, 3.12, 3.13, 3.14 and 3.15 provide power comparisons of the bootstrap method and 

the asymptotic method for the LM tests and the BDS test when the simulated series follows the structure 

ofaBL(l,l), EAR(l), TAR(2;1,1), ESTAR(l), LSTAR(l) or ARCH(1,1) model. Two conclusions emerge 

from these tables. First, the bootstrap powers and the asymptotic powers are quite close to one another 

in most cases. Second, to the extent that there are differences, the bootstrap power are generally larger 

than the asymptotic powers. 

3.5 Discussion 

This chapter has investigated size and power properties of asymptotic and bootstrap versions of 

five LM tests — the BLT(1,1), BLT(2,2), EART(l), STABT(l) and ARCHT(l) tests— and one general 
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Table 3.9: Empirical sizes of LM tests against AR(1) using ACV and BCV 

(i). (i=0, T=100, <rz=l 
Critical Values -0.9 -(J.ti -0.3 0.3 0.6 0.9 

BLT(1,1) Asymptotic 
Bootstrap 

5.9 5.7 5.1 4.7 5.3 3.8 
5.9 5.1 4.8 5.0 5.9 5.1 

BLT(2,2) Asymptotic 
Bootstrap 

4.6 5.3 4.5 4.5 4.1 3.1 
5.7 5.6 4.7 5.2 5.0 3.8 

EART(l) Asymptotic 
Bootstrap 

3.9 4.1 5.6 5.7 4.5 3.8 
4.8 5.2 5.9 6.1 5.7 5.5 

STAKT(l) Asymptotic 
Bootstrap 

4.5 4.5 5.7 4.3 4.5 4.9 
4.8 4.9 5.9 5.2 5.4 3.6 

ARCHT(l) Asymptotic 
Bootstrap 

2.4 3.4 2.5 2.9 2.9 2.3 
4.4 5.2 5.1 5.5 5.3 4.5 

BDS Asymptotic 
Bootstrap 

3.8 4.2 4.3 4.5 4.5 2.5 
5.8 5.4 5.3 6.2 6.1 5.0 

(ii). £t=0, T—5O, <7^=1 
<P Critical Values -0.9 -0.6 -0.3 0.3 0.6 0.9 

BLT(1,1) Asymptotic 
Bootstrap 

4.3 6.9 5.4 4.1 4.2 3.2 
4.4 6.3 5.3 4.9 5.0 3.5 

BLT(2,2) Asymptotic 
Bootstrap 

4.6 3.8 4.3 3.9 3.4 1.7 
6.5 4.8 5.1 5.8 5.3 2.3 

EAKT(l) Asymptotic 
Bootstrap 

2.8 3.6 5.2 4.3 4.2 4.2 
4.3 5.1 5.5 5.5 5.6 4.9 

STAKT(l) Asymptotic 
Bootstrap 

4.3 4.8 4.8 3.1 3.3 9.1 
4.8 5.2 5.0 3.9 4.9 1.9 

ARCHT(l) Asymptotic 
Bootstrap 

1.6 2.2 3.1 1.4 1.9 2.2 
5.2 4.0 6.6 4.2 5.3 5.7 

BUS Asymptotic 
Bootstrap 

4.0 5.0 5.4 5.9 6.4 4.7 
4.3 4.2 4.7 5.6 5.1 5.2 

(iii). /i=0, T=25, &i=\ 

0 Critical Values -0.9 -0.6 -0.3 0.3 0.6 0.9 
BLT(1,1) Asymptotic 

Bootstrap 
4.1 6.7 5.1 3.7 3.5 4.7 
4.8 5.4 5.1 4.5 4.5 4.2 

BLT (2,2) Asymptotic 
Bootstrap 

4.6 4.0 3.9 3.5 2.9 4.6 
6.3 5.9 5.3 4.9 4.3 4.3 

EAKT(l) Asymptotic 
Bootstrap 

3.6 3.1 4.2 3.9 3.1 5.3 
4.1 3.5 5.1 4.2 4.7 4.3 

STAKT(l) Asymptotic 
Bootstrap 

7.7 4.3 4.0 3.0 3.2 16.9 
4.7 4.2 4.5 4.6 4.0 2.5 

ARCHT(l) Asymptotic 
Bootstrap 

1.1 1.0 1.3 6.0 5.0 1.3 
4.3 4.9 5.0 4.6 4.5 5.4 

BDS Asymptotic 
Bootstrap 

8.9 12.0 10.8 10.6 11.2 9.1 
5.3 5.6 4.8 5.6 5.5 5.0 

The empirical rejection percentages are in %. 
The significance level is 5% 
For each parameter setting, 1,000 Monte Carlo replications of AR(1) are generated 
and within each Monte Carlo replication, 1,000 AR(1) series are bootstrapped. 
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Table 3.10: Empirical powers of LM tests against BL(1,1,1) using ACV and BCV 

(i). £t=2, <p=-0.9, c=-0.1, <rz= 1 
Statistics Critical Values T=50 1=1U0 T=2(XJ 
BLT(1,1) Asymptotic 

Bootstrap 
39.2 67.4 93.3 
41.8 69.4 94.2 

BLT(2,2) Asymptotic 
Bootstrap 

19.8 47.3 82.4 
23.7 51.3 84.8 

EAKT(l) Asymptotic 
Bootstrap 

5.3 3.9 6.2 
5.8 5.5 7.7 

STABT(l) Asymptotic 
Bootstrap 

13.1 19.8 38.3 
12.6 19.9 40.6 

ARCHT(l) Asymptotic 
Bootstrap 

7.6 14.0 24.4 
11.6 16.7 27.8 

BDS Asymptotic 
Bootstrap 

9.5 11.3 14.7 
10.5 16.2 26.1 

(ii). n=l, <£>=0.3, c=-0.2, cr=l 
Statistics Critical Values T=50 T=1U0 T=2UU 
BLT(1,1) Asymptotic 

Bootstrap 
39.0 70.5 95.7 
40.3 71.6 96.1 

BLT(2,2) Asymptotic 
Bootstrap 

22.4 49.4 86.2 
24.3 51.5 86.7 

EAJRX(l) Asymptotic 
Bootstrap 

34.5 62.9 91.4 
36.4 64.1 91.6 

START(l) Asymptotic 
Bootstrap 

29.2 61.0 92.3 
29.8 62.3 92.5 

ARCHT(l) Asymptotic 
Bootstrap 

7.2 16.9 32.5 
10.7 21.5 36.7 

BDti Asymptotic 
Bootstrap 

18.1 23.9 36.9 
16.1 26.9 43.4 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) For each parameter setting, 1,000 Monte Carlo replications of BL(1,1,1) are generated 

and within each Monte Carlo replication, 1,000 BL(1,1,1) series are bootstrapped. 
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Table 3.11: Empirical powers of LM tests against EAR(l) using ACV and BCV 

(i). ft= 0, 0=0.3, 7=1, 0=0.9, <t"=0.36 
Statistics Critical Values T=5U T=100 1=200 
BLT(1,1) Asymptotic 

Bootstrap 
6.8 7.2 5.5 
6.5 7.1 5.8 

BLT(2,2) Asymptotic 
Bootstrap 

4.8 5.5 4.8 
6.3 6.2 5.4 

EART(l) Asymptotic 
Bootstrap 

25.0 54.0 84.0 
27.6 55.7 84.2 

STAKT(l) Asymptotic 
Bootstrap 

21.3 45.3 77.4 
22.2 45.6 77.3 

ARCHT(l) Asymptotic 
Bootstrap 

3.1 7.0 11.5 
6.3 10.2 12.9 

BUS Asymptotic 
Bootstrap 

7.5 8.0 9.8 
6.7 9.9 13.4 

(ii). ^=0.3, <9=0.3, 7=1, 6=0.9, <7^=0.36 
Statistics Critical Values T=5U T=100 T=200 
BLT(l.l) Asymptotic 

Bootstrap 
17.6 22.3 39.9 
16.7 22.1 39.6 

BLT(2,2) Asymptotic 
Bootstrap 

7.5 13.9 24.7 
9.3 14.8 25.7 

EAKT(l) Asymptotic 
Bootstrap 

30.8 57.7 88.3 
31.6 58.4 88.7 

STAKT(l) Asymptotic 
Bootstrap 

24.4 48.3 81.4 
24.9 49.0 81.6 

ARCHT(l) Asymptotic 
Bootstrap 

2.3 5.9 10.2 
6.2 8.3 12.2 

BUS Asymptotic 
Bootstrap 

8.8 9.2 11.9 
7.9 10.8 17.0 

(iii). £t=l, 0=0.3, 7=1, 9=0.9, <r*=0.36 
Statistics Critical Values T=50 T=100 T=200 
BLT(l.l) Asymptotic 

Bootstrap 
40.0 64.9 88.3 
40.0 64.4 88.2 

BLT(2,2) Asymptotic 
Bootstrap 

23.1 44.5 79.2 
24.9 46.4 79.5 

EAKT(l) Asymptotic 
Bootstrap 

42.5 68.6 91.3 
41.0 67.9 91.1 

START(l) Asymptotic 
Bootstrap 

42.8 67.4 92.6 
39.9 67.6 92.3 

ARCHT(l) Asymptotic 
Bootstrap 

2.9 4.9 6.1 
6.4 7.1 7.6 

BUS Asymptotic 
Bootstrap 

10.7 8.8 12.8 
10.1 11.2 18.2 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) For each parameter setting, 1,000 Monte Carlo replications of EAR(l) are generated 

and within each Monte Carlo replication, 1,000 EAR(l) series are bootstrapped 
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Table 3.12: Empirical powers of LM tests against TAR(2;1,1) using ACV and BCV 

(i). Pi =#2=0, <>i=0.3, 
0^=-O.6, c=0.2, <t?=<t§=0.49 

(ii). [ii—fi2—0, 0i—0.3, 
02=0.6, c=0.2, erf=<To=0.49 

Statistics CV 50 100 200 Statistics CV 50 100 200 
BLT(1,1) Asymptotic 

Bootstrap 
39.6 67.6 93.1 
39.7 68.3 93.4 

BLT(1,1) Asymptotic 
Bootstrap 

32.3 62.6 91.6 
34.7 63.9 92.1 

BLT(2,2) Asymptotic 
Bootstrap 

22.6 44.5 79.1 
25.3 46.9 80.6 

BLT(2,2) Asymptotic 
Bootstrap 

17.5 39.3 78.9 
21.0 41.8 80.1 

EART(l) Asymptotic 
Bootstrap 

10.8 16.2 22.9 
11.7 17.3 23.7 

EAKT(l) Asymptotic 
Bootstrap 

7.1 13.0 31.1 
8.3 15.6 32.7 

STAKT(l) Asymptotic 
Bootstrap 

32.4 62.0 89.4 
34.2 62.8 90.3 

STAKT(l) Asymptotic 
Bootstrap 

26.9 58.3 91.2 
30.4 62.2 92.0 

ARCHT(l) Asymptotic 
Bootstrap 

5.4 8.9 17.5 
8.5 11.9 19.4 

ARCHT(l) Asymptotic 
Bootstrap 

3.4 8.5 12.7 
6.9 11.9 15.5 

BDS Asymptotic 
Bootstrap 

14.2 19.1 22.9 
13.0 21.7 29.1 

BDS Asymptotic 
Bootstrap 

12.3 13.1 20.6 
10.8 14.9 27.8 

(iii). fi\—-1, —0.5, 0i—0.3, 
09 =-0.3, c=0.2, (T?=<To=0.49 

(iv). /ij — 1, (Ln—""0.0, —ô.3t 

0o =-0.3, c=0.2, cr?=<r3=0.49 
Statistics CV 50 100 200 Statistics CV 50 100 200 | 
BLT(l.l) Asymptotic 

Bootstrap 
12.0 19.6 30.6 
11.5 18.8 30.8 

BLT(1,1) Asymptotic 
Bootstrap 

9.9 18.8 34.7 
10.6 19.2 35.4 

BLT(2,2) Asymptotic 
Bootstrap 

9.3 16.8 27.4 
11.3 18.4 28.4 

BLT(2,2) Asymptotic 
Bootstrap 

5.5 15.5 32.2 
6.9 17.6 32.8 

EART(l) Asymptotic 
Bootstrap 

59.9 88.9 99.3 
64.8 90.8 99.4 

EART(l) Asymptotic 
Bootstrap 

17.0 44.8 81.5 
21.5 49.1 84.0 

STAKT(l) Asymptotic 
Bootstrap 

51.9 85.0 99.2 
54.2 86.3 99.3 

STABT(l) Asymptotic 
Bootstrap 

22.1 46.1 79.9 
15.5 43.6 80.7 

ARCHT(l) Asymptotic 
Bootstrap 

3.4 4.9 8.2 
7.1 7.8 9.8 

ARCHT(l) Asymptotic 
Bootstrap 

4.4 8.9 12.7 
8.5 11.4 14.3 

BDti Asymptotic 
Bootstrap 

5.4 5.4 3.7 
4.6 6.7 6.0 

BDS Asymptotic 
Bootstrap 

8.9 9.2 11.4 
8.7 11.4 18.3 

Note: 

I 
The empirical powers are in %. 
The significance level is 5%. 
For each parameter setting, 1,000 Monte Carlo replications of TAR(2; 
and within each Monte Carlo replication, 1,000 TAR(2;1,1) series are 

1,1) are generated 
bootstrapped. 
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Table 3.13: Empirical powers of LM tests against ESTAR(l) using ACV and BCV 

(i). Mi=0, fjh=0, =-0.5, 09=0.6, 7=50 
Statistics Critical Values 1 =50 1=100 1=200 
BLT(1,1) Asymptotic 

Bootstrap 
4.4 4.5 4.9 
4.7 5.2 5.4 

BLT(2,2) Asymptotic 
Bootstrap 

4.3 4.7 4.1 
5.8 5.8 4.3 

EAK1X1) Asymptotic 
Bootstrap 

5.2 4.9 5.7 
5.8 5.1 6.1 

START(l) Asymptotic 
Bootstrap 

4.3 5.0 4.8 
5.0 6.1 5.2 

ARCHT(l) Asymptotic 
Bootstrap 

1.0 2.2 4.2 
3.7 5.5 6.0 

BUS Asymptotic 
Bootstrap 

o. / 4.0 3.4 
5.1 5.9 5.8 

(ii). tii =1. A*o=-l, 0, =-0.5, <®o=0.6, 7=50 
Statistics Critical Values 1=50 '1=100 T=200 
BLT(1,1) Asymptotic 

Bootstrap 
6.0 8.2 13.0 
6.9 8.4 13.9 

BLT(2,2) Asymptotic 
Bootstrap 

5.2 4.1 7.4 
6.1 4.4 7.9 

EAKT(l) Asymptotic 
Bootstrap 

4.0 4.5 4.6 
4.9 4.8 4.8 

STAKT(l) Asymptotic 
Bootstrap 

5.6 6.8 11.1 
6.9 7.8 12.1 

ARCHT(l) Asymptotic 
Bootstrap 

3.4 3.3 5.2 
4.2 6.4 7.4 

BDS Asymptotic 
Bootstrap 

4.7 2.4 1.6 
4.0 4.2 2.6 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) For each parameter setting, 1,000 Monte Carlo replications of ESTAR(l) are generated 

and within each Monte Carlo replication, 1,000 ESTAR(l) series are bootstrapped. 
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Table 3.14: Empirical powers of LM tests against LSTAR(l) using ACV and BCV 

(1). jj.\ =1, /i»=-1, 0, =-0.5, 00=076^7* =50 
Statistics Critical Values T=5U T=100 1=200 
BLT(1,1) Asymptotic 

Bootstrap 
23.4 41.1 69.8 
23.3 41.8 69.9 

BLT(2,2) Asymptotic 
Bootstrap 

13.9 27.1 50.5 
15.9 28.2 52.4 

EART(l) Asymptotic 
Bootstrap 

7.7 9.4 13.7 
8.5 11.0 15.0 

STAfCT(l) Asymptotic 
Bootstrap 

20.7 37.8 65.8 
21.4 39.3 67.0 

ARCHT(l) Asymptotic 
Bootstrap 

2.7 6.3 7.1 
5.9 9.8 9.0 

BDS Asymptotic 
Bootstrap 

iu.% y.y 10.0 
9.0 12.1 14.1 

(ii). m,=1, #;=-l, 0t=-O.5, 02=0.6, 7*=50 
Statistics Critical Values T=5U T=100 1=200 
BLT(1,1) Asymptotic 

Bootstrap 
49.7 76.7 97.0 
48.6 75.8 97.1 

BLT(2,2) Asymptotic 
Bootstrap 

34.0 69.6 96.5 
36.5 71.8 96.5 

EART(l) Asymptotic 
Bootstrap 

45.5 74.9 94.5 
46.5 76.5 94.9 

STAKT(l) Asymptotic 
Bootstrap 

50.7 82.3 98.8 
51.5 82.9 98.9 

ARCHT(l) Asymptotic 
Bootstrap 

3.9 7.6 10.9 
7.9 10.5 13.4 

BDS Asymptotic 
Bootstrap 

13.2 13.3 1Ô.S 
12.0 16.3 21.8 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) For each parameter setting, 1,000 Monte Carlo replications of LSTAR(l) are generated 

and within each Monte Carlo replication, 1,000 LSTAR(l) series are bootstrapped. 
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Table 3.15: Empirical powers of LM tests against ARCH(1,1) using ACV and BCV 

(i).At=0,<p=0.6,Qo=l,ûi=0.8,<rz=l 
Statistics Critical Values T=50 T=100 T=200 
BLT(1,1) Asymptotic 

Bootstrap 
20.1 25.5 37.9 
23.1 28.0 39.4 

BLT(2,2) Asymptotic 
Bootstrap 

33.2 45.6 60.7 
36.3 48.0 61.1 

EAKI(l) Asymptotic 
Bootstrap 

19.4 25.6 33.7 
22.6 29.6 37.5 

STAKT(l) Asymptotic 
Bootstrap 

27.5 37.4 54.1 
31.5 39.8 56.3 

ARCHT(l) Asymptotic 
Bootstrap 

59.0 91.1 100.0 
64.0 91.5 99.9 

BUS Asymptotic 
Bootstrap 

64.5 92.3 99.8 
63.7 93.3 99.8 

(ii)./i=l,0=0.6,ao=l,ai =0.8,<7^=1 
Statistics Critical Values 1=50 T=1UU 1=200 
BLT(1,1) Asymptotic 

Bootstrap 
19.4 24.7 37.6 
20.2 25.3 38.0 

BLT(2,2) Asymptotic 
Bootstrap 

32.4 42.7 59.6 
33.3 44.8 59.9 

EAKT(l) Asymptotic 
Bootstrap 

14.8 21.3 33.3 
17.0 24.6 36.2 

STAKT(l) Asymptotic 
Bootstrap 

34.7 39.5 54.3 
24.6 37.1 55.7 

ARCHT(l) Asymptotic 
Bootstrap 

60.0 90.1 100.0 
66.9 91.6 99.9 

BDS Asymptotic 
Bootstrap 

60.4 90.1 99.4 
61.1 92.5 99.7 

Note: 1) The empirical powers are in %. 
2) The significance level is 5%. 
3) For each parameter setting, 1,000 Monte Carlo replications of ARCH(1,1) are generated 

and within each Monte Carlo replication, 1,000 ARCH(1,1) series are bootstrapped. 
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Table 3.16: Rank of power performance of LM tests 

Model\Test BLT(l,l) BLT(2,2) EAKT(l) STAKT(l) ARCHT(l) 
BL(1,1,1) 3 1 5 2 4 
EAR(l) 0 o 1 2 a 

TAR(2;1,1) 2 2 2 1 2 
ESTAR(l) 3 4 2 1 0 
LSTAR(l) 2 4 4 2 5 
ARCH(1,1) 2 2 2 2 1 

linearity test — the BDS test. The null model in this investigation is the AR(1) model and the alternative 

models include various parameterization of BL(1,1,1), EAR(l), TAR(2;1,1), ESTAR(l), LSTAR(l) and 

ARCH(1,1) models. 

The main conclusions are: 

1. Power comparison of LM tests 

We discover that the five LM tests BLT(1,1), BLT(2,2), EART(l), START(l), and ARCHT(l) vary 

widely in terms of power levels depending on model parameters. The natural thought that the specific 

LM test corresponding to the nonlinear model will have higher power than other LM tests is proved 

wrong. For example, for a BL(1,1,1) series with large values of c, BLT(1,1) might not be the test with 

highest power since it is a local test. 

However, among the five LM tests we discussed, the START(l) seems to be the best for the simulated 

series of BL(1,1,1), EAR(l), TAR(2;1,1), ESTAR(l), LSTAR(l) and ARCH(1,1) with respect to overall 

power performance. Based on the research we have done, a trial to order the tests by empirical power for 

different series is listed in Table 3.16. The numbers in the table represents the rank a test will have for a 

certain type of series. The smaller the number is, the higher the rank. And we can see that START(l) 

has ranked at least the second for all the series investigated. 

(1). The BL(1,1,1) model: yt = fi + 1 -f-cye-i£t-i 4-St 

Figures 3.1—3.5 show that for the coefficient c near the null value 0, BLT(1,1), BLT(2,2), START(l) 

are good; when the absolute value of c increases, BLT(2,2) and START(l) are better than BLT(1,1) for 

high empirical power levels and small variance between power curves. ARCHT(l) works not very well 

when c is small. EART(l) seems to be the worst. Usually we will think that BLT(l.l) should be the 
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best test for BLT(1,1,1) model, but it is not. 

(2). The EAR(l) model: y t = f i  +  + [exp (— y?_t) - l] d y t - i  + et 

From Figure 3.6—3.10, it's very obvious that the BLT(1,1), BLT(2,2), ARCHT(l) statistics almost 

have no power against the EAR(l) model: excluding the jump points5, their empirical powers are around 

5% and not sensitive to the value taken by the model coefficients <p and 9. The pattern of the empirical 

powers of the EART(l) is very similar to that of the STAKT(l), and the level of the empirical powers 

of the EAKT(l) is a little bit higher than that of the STABT(l). 

(3). The TAR(2;1,1) model: », = {££ + % jf *Z\ < = 

There are many coefficients in TAR(2;1,1) model: pl, fin, <pl, <p2, <%2 and c, so empirical power 

curves are not produced for the TAR model. Still, from Table 3.5, we can get a brief impression about 

the tests' power performance. ARCHT(l) is not very sensitive to TAR models when cri = <t2. However, 

it has the highest power when <rt ^ <7o- START(l) comes next. For cases when (T\ = <r2, EART(l) and 

START(l) are better than the BLT type tests if intercepts are not equal to 0 and START(l) is better 

than EART(l); if intercepts are equal to 0, the power of BLT(1,1) is highest, the second is START(l), 

and the rest are in the order BLT(2,2), EART(l) and ARCHT(l). The situation for the TAR model is 

really complicated, concerning consistently high power, START(l) has a score of 1, and the others have 

2. 

(4). The ESTAR(l) model: yt = nx + <j>xyt-i + (#2 + <P2yt-1) * jl - exp [-7 (yt-i)2] } +et 

It is difficult to plot the empirical power curves for the ESTAR model since there are five model 

coefficients. Special cases are illustrated in Table 3.6. ARCHT(l) seems not to have obvious power 

against this model. When 7 takes very a large value, such as 10,000, the ESTAR approximates the liner 

model, so all the tests' powers are around 5%. When the two intercepts are equal to zero, the EART(l) 

and the START(l) are the best two, with EART(l) being a little better than the START(l); the BLT 

tests' powers are very low. When intercepts are nonzero, START(l) is the best. The order of EART(l), 

BLT(1,1) and BLT(2,2) changes as 7 changes. Throughout all the cases in Table 3.6, BLT(1,1) is better 

than BLT(2,2). 
5 When the model coefficients \<p — 9| > 1, there will be either a jump in the test statistics or no statistics value at all. 
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(5). The LSTAR(l) model: yt = 4-^yt-i + ((*? + faVt-i) x ^{1 + exp [—7(^-1 )]}-1 — O.sJ +et 

Again, there are no empirical power curves for LSTAR model due to the number of coefficients. 

When intercepts are zero, the order is like: BLT(1,1), STABT(l), BLT(2,2), EART(l) and ARCHT(l); 

when intercepts are nonzero, the order is: START(l), BLT(1,1), BLT(2,2) or EABT(l), ARCHT(l). 

Results are in Table 3.7. 

(6). The ARCH(1,1) model: yt = fi + +ut with ut = ety/fh = et^/ao +o;luf_1 

The ARCHT(l) is best, though the other four have good powers too. See Table 3.8. 

Overall, the START(l) can be applied widely since it has relatively high powers for all the nonlinear 

series. The ARCHT(l) is relatively narrow because it does not have high power for non-ARCH series. 

Of course, the above conclusion may not always be true since the research here is still limited. 

2. Asymptotic critical values and bootstrap critical values 

We use asymptotic critical values in the above power comparison. However, for small sample size, 

critical values created from the asymptotic distribution may not be good approximations of the true 

critical values. We consider replacing the asymptotic critical values with the bootstrap critical values. It 

turns out that the bootstrap method generally has higher empirical power than the asymptotic method, 

though the differences are rather small. Moreover, the bootstrap method is better than the asymptotic 

method concerning size. The empirical size obtained by using bootstrap critical values is always near 

the nominal 5% level, while the empirical size produced by the asymptotic critical values deviate from 

5% for small sample size and large absolute values of autocorrelation coefficient <?, especially for the 

START(l). Last, the actual size using asymptotic critical values for ARCHT(l) is systematically below 

5%. 

In all, we should consider using bootstrap critical values rather than asymptotic critical values when 

* Sample size is less than 200; 

* The autoregressive coefficient is near the unit circle; 

* The linearity test is ARCHT or BDS. 

3. LM and BDS tests 
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The comparison of LM test and BDS test can be approached from the following perspectives: 

(1). Generality 

At first sight, the advantage of BDS test over an LM test is its generality. But the research here 

shows that 

* An LM test can have good power against a variety of nonlinear series, sometimes even higher 

power than the LM test constructed specifically for a nonlinear series with known structure. 

* Though the BDS test is supposed to be a general test, its power usually is not very high. From 

section 3.4, we observe that except for the ARCH model, the powers of the BDS test are generally below 

20%, which puts its power rank 5th or 6th among the six tests discussed. 

(2). Construction and running time 

It is very time-consuming to calculate the BDS statistic, while it is pretty simple to calculate LM 

statistics. There are some uncertainties when constructing a BDS test. We need to pre-specify the 

parameters m and e. So in order to get a complete view of BDS testing results, various BDS statistics 

with different m and e need to be computed, which puts more stress on the computer. 

The building of an LM test requires the parameterization of the alternative model, which is usually 

unknown in empirical studies. This problem could possibly be handled in two ways: 

* Primary data investigation and the characteristics of a certain type of data could provide some 

clues. For example, clusters of bursts in high frequency financial data usually implies an ARCH type of 

data. It is like having the model first and using the test to verify the instinct. 

* We can also run various LM tests on the data. It is most likely that the LM test with the highest 

power points to the right nonlinear model. Contrary to the first method, this method uses tests to search 

for a possible nonlinear model. 

No matter which method we use, we have to spend time either doing the primary data investigation 

or running several LM tests. Therefore, in empirical studies, a linearity test is not simply doing a test. 

It becomes a system of work, requiring time and scrutiny. 
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CHAPTER 4 

EMPIRICAL STUDY: AN APPLICATION TO EXCHANGE RATES 

In this chapter, possible nonlinearities in four major countries' foreign exchange rates are explored. 

Both the START test, which is the champion of competition of various linearity tests in last chapter, 

and the BDS test are performed on the data. Comparisons of forecasts generated by the ESTAR and 

BL models are made with forecasts generated by the linear AR model and the random walk model (with 

and without drift). In-sample and out-of-sample forecasting comparisons are made. 

4.1 Introduction 

In their 1983 paper, Meese and Rogoff [81] suggest that for the out-of-sample forecasting performance 

of nominal foreign exchange rates, the seemingly naive random walk model does the best. Other models, 

including univariate time series models, unconstrained vector autoregression models, or structural models 

like the Dornbusch-Frankel sticky-price monetary model cannot beat the random walk model as far as 

out-of-sample forecast performance is concerned. 

After that, many efforts have been tried to overturn this conclusion. 

As Meese and Rogoff say in their paper [81], "as long as the exchange rate does not exactly follow 

a random walk, we could expect one of the estimated time series models to prevail in a large enough 

sample". However, since the floating system of foreign exchange rates came into effect in 1973, the data 

for foreign exchange rates may still not be long enough even after 18 years. Some (For example, Frankel 

[48], Edison [37]) are able to reject the random walk model with mixed fixed and floating rate data, but 

it always raises doubts that whether the rejection is due to the long data or due to the change of the 

exchange rate system. 

Meese and Rogoff [81] measure the out-of-sample accuracy by three statistics: mean error (ME), 

mean absolute error (MAE), and root mean square error (RMSE) with RMSE as the principal criterion 
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for comparing forecasts. Many others use the mean square prediction error (MSPE), which is the analogy 

to the RMSE. Yet some also judge the forecasts by looking at their ability to predict the direction of 

the changes of foreign exchange rates, besides their ability to minimize the MSPE or RMSE, etc. For 

example, Engel [42] shows that by measuring predictive ability of the direction of changes, the Markov 

regime-switching model is better than the random walk model, though it does not improve on the random 

walk model in achieving minimum MSPE. By using a forecast density evaluation technique, Clements 

and Smith [27] are able to show the inadequacy of the random walk model versus the SETAR model. 

Meese and Rogoff [81] make no attempt to account for possible nonlinearities in the data. Therefore, 

it is possible that there are nonlinear models which can do better ex-ante forecasting than the random 

walk model. Diebold and Nason [34] apply the nonparametric locally-weighted regression to exchange 

rate changes in an autoregressive framework. Meese and Rose [82] allow for nonlinear extensions to 

structural exchange rate models. Their work indicates some nonlinear dependence in conditional means, 

however, the out-of-sample forecasting is not improved over the random walk model by accounting for 

nonlinearities. 

Motivated by the conjecture that the managed float system leads to different behavior of moderate 

and large exchange rate changes (Hsieh [66]), Krager and Kugler [71] find that the self-exciting threshold 

autoregressive (SETAR) models can be used to describe the behavior of five weekly dollar exchange rate 

series from 1980 to 1990. However, the BDS and stability tests suggest that SETAR models may be 

mis-specified. Similar problems occur with the G ARCH model. Pippenger and Goering [101] apply the 

SETAR model to the logarithm changes of 13 countries' monthly exchange rates. Besides a significant 

fit, they find that the SETAR model produces better forecasts than the random walk model in terms of 

MSPE for both in-sample and out-of-sample forecasting, though the Diebold-Mariano (D-M) statistic 

[33] indicates that the two models generate forecasts of similar accuracy. Clements and Smith [27] 

consider the forecasting performance of two SETAR exchange rate models by Krager and Kugler [71]. 

They argue that whether the SETAR model is better than the random walk model or not depends on 

the "state of nature" and the forecasting measurement. 
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By constructing a Markov regime-switching model [58] as a sequence of stochastic, segmented time 

trends on the percentage changes of quarterly foreign exchange rates of Germany, France and UK from 

1973:IV to 1988:1, Engel and Hamilton [43] are able to explain the phenomenon that the value of the 

dollar appears to move in one direction for long periods of time. The random walk model is formally 

rejected in favor of the model of long swings, which also provides better forecasts in sample. However, 

the advantage of the Markov regime-switching model over the random walk model while forecasting 

out of sample is ambiguous. Engel [42] argues that while the Markov regime-switching model does not 

generate superior out-of-sample forecasts measured by the MSPE, it does a better job in predicting the 

direction of the foreign exchange rate changes than the random walk model. 

According to Kill an and Taylor [70], the most successful nonlinear empirical exchange rate models 

embody the smooth transition autoregression model. Several papers have investigated the nonlinearities 

in the form of an ESTAR model of real exchange rates, including Balke and Fomby [6], Taylor and Peel 

[113], Taylor et al. [114], and Baum et al. [8]. Possible explanations for the model could be transaction 

costs, foreign exchange market interventions, uncertainty about the equilibrium level of the exchange 

rate, etc. The ESTAR model is attractive for describing nonlinearities in exchange rates because it allows 

a smooth transition between two extreme regimes and symmetric adjustment for deviations above and 

below the equilibrium level. 

This empirical study can be regarded as looking at the foreign exchange rates from the nonlinear 

perspective. The data start after the breakdown of the Bretton Wood system in 1973. Forecasts will be 

compared by the traditional MSPE and the MSPE difference will be tested by the D-M test. But possible 

nonlinearities in the exchange rates will be tested, estimated and forecasted. For the six nonlinear models 

discussed before, only the ESTAR and the BL model are used here. The ESTAR model is preferred to 

the TAR model because the latter is built under the assumption that the transition between regimes 

is abrupt and sudden. For the foreign exchange rate markets, that requires that many of the market 

participants make the same decision at the same time, which is quite improbable. Besides, the ESTAR 

model includes the TAR model as a special case. Another smooth transition model, the LSTAR, implies 
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asymmetric smooth transition from one regime to another, which is deemed to be inappropriate for 

modeling exchange rate movement. The EAR model is also a special case of the ESTAR and sometimes 

considered as the precedent for the ESTAR model. The ARCH model has done a good job in estimating 

and forecasting daily and weekly exchange rate data, but many researchers, like Baillie and Bollerslev 

[5], find the ARCH type nonlinearities are not a typical pattern when monthly or annual data are tested. 

Actually in this case, estimation of the data as an ARCH model produces a worse SBC than the linear 

AR model. Literature about application of the bilinear model to the nominal foreign exchange rate is 

rare so far. But we find the BL model to be a strong competitor in this empirical study. 

4.2 Data Analysis 

The data set comprises monthly averages of the Canadian dollar, French franc, British pound, 

and Japanese yen against the US dollar, which are denoted as xi, 12, 2%, x4, respectively. N'ote that 

subscriptions 1, 2, 3, and 4 will be used to refer to country Canada, France, Britain and Japan in the 

rest of the chapter. The sample period is from January 1973 to March 2001 for all four series. So in 

total, there will be 339 observations for each series. The above data are downloaded from the webpage 

of Pacific Exchange Rate Services (http://pacific.commerce.ubc.ca/xr/data.html), which is supported 

by Professor Werner Antweiler of the University of British Columbia at Vancouver, Canada. 

For the data transformation the first step is to take the natural logarithm for the foreign exchange 

rate series in order to alleviate possible heteroskedasticities and avoid any problems arising from Jensen's 

inequality (Meese and Rogoff [81]). Also to keep the data in a comfortable magnitude, multiplication by 

100 is applied to the logarithmic foreign exchange rates. The resulting patterns are illustrated by Figure 

4.1. 

The augmented Dickey-Fuller test (ADF) [30, 31] and the Phillips-Perron test (PP) [99, 100] are 

used to examine if there is any presence of a unit root. As Table 4.1 shows, the foreign exchange rates 

are 1(1) processes. Accordingly, a first difference transformation is applied to the previously transformed 

data. Also, means are subtracted from the data to make later estimations easier. The means are 

ci = 0.1315, C2 = 0.1040, C3 = 0.1448, and c» = —0.2692. Therefore, the transformed data series 

http://pacific.commerce.ubc.ca/xr/data.html
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Figure 4.1: Monthly average exchange rates (1973:1-2001:3) 

are: 100 x {logxu - Iogxu_t} - ct, 100 x {logx2t - logx2t-i} - c2, 100 x {Iogx3e - logx3t-i} - c3, 

100 x {logx4t - logx4t_I} - C4. We name these {j/k}, {t/2t}, {j»3th {îAtt}, respectively. 

4.3 Linear Estimation 

The data properties of {ynh {îtet}» {î/3tK and {y4t} from February 1973 to March 2001 are listed 

in Table 4.2'. We find that there are strong indications of serial correlation for all four series according 

to the Ljung-Box Q statistics. 

We start our parametric modeling of the series with the linear autoregressive model first. To get 

a parsimonious model, the method of forward selection (Neter et al. [88]) is used here. The possible 

regressor set for the four exchange rates includes autoregressive lag terms of the dependent variables with 

a maximum lag of 12 (which is reasonable for monthly data), so there will be 12 candidate regressors2. 

To be consistent, the starting point for estimation of the dependent series {y2t\, {yzt h and {y+t} 

will be February 1974 and the ending point is March 2001. The regressor selection criterion could be 
1 Numbers in parentheses are corresponding p  values. 
2Since the data has already been demeaned, a constant term is not included in the regressor set. 
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Table 4.1: Unit root test 

Country Series AD F test PF test 

Canada *1 1.3396 -0.7383 -1.(5384 -0.6576 -1.5344 
dx i -15.2276 -15.4241 -15.4018 -15.3664 -15.3437 

France 0.4871 -1.5446 -1.7174 -1.3170 -1.5760 
dx 2 -13.6594 -13.6638 -13.6431 -13.6273 -13.6070 

Britain Z3 -1.5334 -2.4236 -2.6868 -2.0397 -2.2643 
dxz -11.9670 -11.9992 -11.9982 -12.5512 -12.5406 

Japan x4 -1.0899 -1.1808 -2.2668 -1.3022 -1.9088 Japan 
<£x4 -12.8216 -12.8586 -12.8450 -12.7817 -12.7689 

Note: 1) 

4) 

The regression equations used by the test statistics r, and rT are 
Ayt = -yyt-i + ZLi PAvt-i + £e, 
Aye = ûo + TVt-i + £f=l + £t, 
Ayt = a0 + oit + Tyt-i + H?=l j3{Aye-i 4- et, respectively. 
The lag of the ADF test is chosen by BIC, the lag of the PP test is fixed at 3. 
Not only the single unit root tests are performed (rows of z,'s), but also the 
double unit root tests (rows of dxi's), i = 1, ••• ,5. 
The critical values are the same for the ADF and PP test. For a sample size 
of 250, the 5% critical values are -1.95, -2.88 and -3.42 for r, and rr. 

Table 4.2: Summary statistics of transformed foreign exchange rates (1973:2-2001:3) 

Statistics Yi Y2 73 y*t 
Variance 1.U8U4 7.2594 6.3949 8.3724 

Minimum -2.5089 -7.2344 -9.8841 -10.1554 

Maximum 3.2126 8.8577 10.5984 8.4752 

Skewness 0.1912 
(0.1531) 

0.0762 
(0.5689) 

0.1246 
(0.3517) 

-0.5608 
(0.0000) 

Kurtosis -0.0625 
(0.8164) 

0.2882 
(0.2844) 

1.4254 
(0.0000) 

0.8703 
(0.0012) 

Q(8) 17.2253 
(0.0278) 

37.0551 
(0.0000) 

44.3822 
(0.0000) 

49.5994 
(0.0000) 

Q(16) 41.0422 
(0.0005) 

39.1232 
(0.0010) 

57.4685 
(0.0000) 

63.3213 
(0.0000) 

Q(24) 47.7519 
(0.0027) 

48.8865 
(0.0020) 

71.0741 
(0.0000) 

75.1589 
(0.0000) 

Q(32) 60.4543 
(0.0017) 

52.7281 
(0.0120) 

81.2776 
(0.0000) 

79.5927 
(0.0000) 

Q(40) 70.4172 
(0.0021) 

65.5555 
(0.0066) 

97.3855 
(0.0000) 

99.7865 
(0.0000) 

Q(48) 83.2750 
(0.0012) 

72.7056 
(0.0122) 

127.9524 
(0.0000) 

128.3407 
(0.0000) 
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Table 4.3: Linear estimation 

Country Estimated. AK Models AIC SBC RSS 
Canada yit=0.1488xyu_1+0.1373xyu_a+U.1394xyu_lo+e£ 

(0.0065) (0.0130) (0.0121) 
1905.46 1916.82 339.1W 

France y2t=0.2762xy2t_i+£e 

(0.0000) 
2481.53 2485.31 2010.05 

Britain y3t=0.3952 x y3t _ t-0.1419 x yzt-z+^t 
(0.0000) (0.0100) 

2448.48 2456.06 1805.18 

Japan y»=0.3409x y4t-1 +0.1409xy4£_u 

(0.0000) (0.00631 
2526.05 2533.63 2290.11 

the Schwartz Bayesian Criterion (SBC), Akaike Information Criterion (AIC), or Residual Sum Squares 

(RSS). Here, the SBC is used. The regression procedure for series {yi}, for example, is: 

1. First, run a do-loop to regress {yu} on each regressor from the regressor set {{yu-ih {yic-s}, 

-, {yit-n}, {yit-12}}- Choose the regressor with the lowest SBC (SBCi), which is {yn-i} for the 

Canadian dollar; 

2. Second, conduct a do-loop by running regressions of {yu} on {yit-i} and one regressor from the 

remaining regressor set. The term {yu-s} is chosen with the lowest SBC (SBC2) from the 11 candidates. 

However, only if SBC2 is less than SBCi can {yu-g} be added to the regression function. Otherwise, 

the regression function is done at the first step. Also if the introduction of {yu-s} seriously decreases 

the t statistic of {yit-i}, then {yu-i} should be dropped from the regression function. The Canadian 

dollar series {yu} does not have this problem; 

3. The third round do-loop is similar to do-loop two. As a result, the term {y«—11} is added to the 

regression function and neither {yu-i} nor {yu-s} are dropped; 

4. The fourth do-loop produces a minimum SBC (SBC*) that is larger than the third round 

minimum SBC (SBC3), so the selection stops at step three. Therefore the final autoregressive terms of 

{yu} are {yu-ih {yu-s} and {yn-11}. 

All the estimated autoregressive models and the relevant values of the AIC, SBC and RSS are listed 

in Table 4.3. The properties of the estimated residuals (see Table 4.4), which are named {ei}, {£2 h 

{£3}, {£4}, are compared with {yi}, {y2}, {ya}, {y4}- Through the linear filter, the variance and serial 
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Table 4.4: Summary statistics of residuals from linear estimation (1974:2-2001:3) 

Statistics £i £2 =3 C4 
Variance 1.0436 6.1848 5.5543 7.0465 

Minimum -2.9076 -7.6166 -8.3636 -9.2408 

Maximum 3.1751 9.7354 8.2783 7.4692 

Mean 0.0102 -0.0012 -0.0116 -0.0019 

Skewness 0.0425 
(0.7550) 

0.0556 
(0.6834) 

0.0578 
(0.6713) 

-0.5588 
(0.0000) 

Kurtosis -0.0361 
(0.8954) 

0.8359 
(0.0023) 

0.9774 
(0.0004) 

0.8907 
(0.0012) 

Q(8) 3.1042 
(0.9276) 

8.1729 
(0.4168) 

7.4280 
(0.4912) 

13.4830 
(0.0963) 

Q(16) 15.4569 
(0.4915) 

13.3876 
(0.6442) 

16.1280 
(0.4441) 

21.0748 
(0.1757) 

Q(24) 23.7134 
(0.4781) 

24.6846 
(0.4231) 

25.6570 
(0.3708) 

31.2883 
(0.1456) 

Q(32) 37.8677 
(0.2191) 

29.2429 
(0.6068) 

31.6687 
(0.4833) 

39.4150 
(0.1722) 

Q(40) 41.6394 
(0.3993) 

41.6500 
(0.3988) 

41.4380 
(0.4078) 

50.9572 
(0.1148) 

Q(4S) 47.6404 
(0.4875) 

48.9730 
(0.4338) 

59.3005 
(0.1271) 

64.3404 
(0.0576) 

correlation of the data series decrease. None of the Ljung-Box Q statistics for the residuals calculated 

for lags from 8 to 48 with a step of 8 are significant for a = 5%. 

4.4 Nonlinear Exploration 

It seems that a linear regression does a good job of modeling the foreign exchange rates of the 

four countries. But is it possible that some nonlinear time series models might surpass the linear time 

series models? The BDS test, a general nonlinear diagnostic test is used here to investigate the possible 

nonlinear structure of the prewhitened data, {?%}, {rg}, {r3}, and {r4}. 

The BDS tests results with m (correlation integral dimensions) running from 2 to 5 and I (distance 

in terms of data variance) ranging from 0.5 to 1.5 with a step of 0.25 are listed in Table 4.5. The 

BDS test is asymptotically distributed as a standard normal distribution iV(0,1). So for significance 
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Table 4.5: BDS statistics of residuals from linear estimations 

m I £l £2 £3 £4 
a 1.0 2.3741 -2.2403 '2.U952 2.1885 
3 1.5 3.2238 -1.2567 2.3775 2.2010 
4 1.5 3.2724 -0.3699 3.3085 2.1067 
5 1.5 3.1292 0.2852 4.0210 2.4171 

2 1.25 2.4177 -1.9650 2.0223 1.8505 
3 1.25 3.2769 -0.9709 2.4418 2.0135 
4 1.25 3.2113 -0.0637 3.4749 2.0664 
5 1.25 3.1833 0.4535 4.2155 2.5066 

2 1 2.5739 -2.0252 1.6435 1.9031 
3 1 3.5246 -0.9610 2.4180 2.2997 
4 1 3.2709 0.2395 3.6321 2.3100 
5 1 3.4016 0.8171 4.5205 2.5996 

2 0.75 2.2461 -1.1463 1.6785 1.9842 
3 0.75 3.2703 0.0586 2.2302 2.7874 
4 0.75 3.2438 1.2987 3.5470 2.9809 
5 0.75 3.4769 2.4009 4.3610 3.1226 

2 0.5 1.9053 -1.6638 1.9110 2.7065 
3 0.5 3.4186 -1.0700 2.3564 2.8692 
4 0.5 4.2320 -0.8349 3.6496 3.2080 
5 0.5 4.0929 -0.8837 4.6387 4.2922 

level 5%, the asymptotic critical value is ±1.96. However, the asymptotic distribution usually requires 

sample size no less than 500 to have a good approximation of the true distribution. Since our sample 

size is only 326 for estimation period from 1974:02 to 2001:03, special attention is needed toward the 

discrepancy between the asymptotic distribution and the true distribution of the BDS statistic. Kanzler 

[67] conducts Monte-Carlo simulations to tabulate the small sample distribution of the BDS test. The 

relevant information is listed in Table 4.6. 

Examining Tables 4.5 and 4.6, we find that there is evidence of nonlinear structures in the Canadian 

dollar, British pound and Japanese yen, and almost no evidence of nonlinearities for the French franc. 

Except for the BDS statistic —2.2403 when I = 1.5 and m = 2, which is only slightly significant at best, 

other BDS statistics of French franc are not significant for 95% significance level. 

The BDS test shows that there could be nonlinear structures in the foreign exchange rate data of 

three countries. To compare with the BDS test, the LM test for the alternative STAR model is conducted 

for the four countries. Although the START is derived as a specific test, it was shown in the last chapter 

that the START has quite general power against other nonlinear models besides the STAR, model and 
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Table 4.6: Small sample distribution of BDS statistic 

T m 1 2.5% 97.5% T m I 2.5% 97.5% 
25U '2 1.5 -2.13 2.22 500 2 1.5 -2.01 2.10 
250 3 1.5 -2.12 2.22 500 3 1.5 -2.02 2.09 
250 4 1.5 -2.14 2.25 500 4 1.5 -2.00 2.12 
250 5 1.5 -2.13 2.25 500 5 1.5 -1.98 2.11 

250 2 1.0 -2.09 2.26 500 2 1.0 -2.01 2.15 
250 3 1.0 -2.11 2.30 500 3 1.0 -2.00 2.15 
250 4 1.0 -2.09 2.35 500 4 1.0 -1.99 2.20 
250 5 1.0 -2.10 2.44 500 5 1.0 -1.96 2.26 

250 2 0.5 -2.54 2.81 500 2 0.5 -2.22 2.46 
250 3 0.5 -2.86 3.13 500 3 0.5 -2.38 2.64 
250 4 0.5 -3.29 3.75 500 4 0.5 -2.62 2.92 
250 5 0.5 -4.11 4.78 500 5 0.5 -3.09 3.55 

it usually performs better than the BDS test. So here the START is used as a general linearity test to 

detect the nonlinearities in the exchange rates data rather than as a specific test testing for STAR type 

nonlinearities. 

One problem arises here. In Chapter Three, we limit the order and the lag parameter of the 

alternative ESTAR and LSTAR models to be 1, so the corresponding LM tests for ESTAR(l) and 

LSTAR(l) are the same, which we name START(l). However, in this chapter, we relax the restriction 

and allow the order to vary between 1 to 12 and the lag take values from 1 to 5. Therefore, we will have 

different ESTART and LSTART, and the information from Chapter Three can not tell us which START 

test, ESTART or LSTART, has the better general powers. So we will calculate both the ESTART and 

LSTART statistics for the exchange rate data in this chapter. 

The ESTART for the alternative single-term ESTAR model 

p 

yt = 53 àiyt-i + (l - exp [-7 (yt-d - c)2j j x 0,yt_+ et (4.1) 
t=l 

has the z\t term 

zu = - [ yt-iVt-d yt-jy?_d ]'• (4.2) 

So the ESTART will have a x2 distribution asymptotically with the degrees of freedom equal 2. 

The LSTART for the alternative single-term LSTAR model 

p 
Vt = 53 -r [{1 + exp [-7 (yt_d - c)]}~1 - O.sj x 9_,yt-j -+- et (4.3) 
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has the zlt term 

Zit  =  -  [ yt- jVt-d Vt-d }'  •  (4.4) 

So the asymptotic distribution of LSTART is also x%-

The ESTART statistics when model order p runs from 1 to 12 for transition variables being lagged 

dependent variables with d = 1, 2, 3, 4, and 5 are listed in Table 4.7. The highest ESTART statistic for 

each series is underlined. The results are encouraging. For Canada, the highest statistic 9.487 happens 

for a transition variable yu-2 with p = 1; the French franc exhibits nonlinearities with the highest 

ESTART 9.376 for p = 6 and d = 3; with the transition variable being 2/34-3, the ESTART(9) equals 

20.688, indicating that the British pound has significant nonlinearities; Japan has the largest ESTART 

12.001 with p = 2 and d = 1. Asymptotically, the ESTART statistics for a specific value of p and d, whose 

alternative is a single-term ESTAR model, follows a chi-square distribution with degrees of freedom equal 

2, which has a critical value of 5.99 for the 95% significance level. Although it is not the exact asymptotic 

distribution of the sup(ESTART) test we use here, a statistic value of sup(ESTART) much larger than 

the critical value for ESTART makes us believe that the four foreign exchange rate series do exhibit 

nonlinear dynamics. The LSTART statistics for the four foreign exchange rates are tabulated in Table 

4.8 with the sup(LSTART) underlined. All the sup(LSTART) statistics are significantly larger than 

5.99, the critical value of x§ at the 95% significance level. Therefore, we come to the conclusion that 

both the ESTART and LSTART detect nonlinearities in the four exchange rate series. 

Comparing the conclusions drawn from the BDS test and ESTART tests, the BDS test shows 

evidence of nonlinear structures for the foreign exchange rates of Canada, Britain, and Japan and 

almost no evidence of nonlinearities for the French franc. However, the ESTART statistics indicate 

nonlinear behaviors for all four countries' exchange rates. Given the better performance of ESTART 

against BDS test, it is believed that nonlinearities do exist in the exchange rates of the four countries. 

In the next section, further investigation of the non linearity is conducted: specific nonlinear models such 

as the exponential smooth transition autoregressive (ESTAR) model and the bilinear (BL) model will 

be discussed for the foreign exchange rates data. 
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Table 4.7: ESTART statistics 

d\p 1 2 3 4 5 6 7 8 9 10 11 12 
Canada 
1 2.432 6.745 2.442 0.523 1.269 1.203 0.511 3.261 1.663 1.541 3.337 0.270 
2 9.487 0.979 0.282 0.397 1.706 2.132 3.320 1.688 0.327 0.715 5.622 5.357 
3 1.822 0.859 0.404 5.506 4.070 1.070 0.059 5.723 1.852 0.267 0.358 3.883 
4 1.148 1.263 2.178 0.019 1.846 3.028 0.450 0.060 0.950 1.891 4.781 1.607 
5 3.044 2.538 1.864 2.043 1.416 0.342 0.637 0.503 1.571 9.051 1.161 2.795 

France 
1 0.585 1.961 3.409 1.387 1.369 1.311 2.761 2.310 2.105 2.460 1.551 1.916 
2 1.589 0.763 0.555 1.844 4.219 1.673 4.159 4.012 0.702 0.062 0.222 1.030 
3 3.296 1,121 7.634 1.743 3.066 9.376 3.095 2.251 1.540 5.016 0.451 2.274 
4 0.210 1.712 1.073 0.253 1.843 0.299 5.204 0.935 2.995 2.281 1.599 3.024 
S 0.179 0.317 1.742 1.598 0.152 1.110 1.699 3.622 4.595 0.470 1.524 1.046 

Britain 
1 2.304 0.986 1.669 1.616 2.503 2.468 1.778 7.099 5.611 1.527 3.433 2.079 
2 3.294 0.264 0.661 0.333 1.517 4.356 3.127 0.460 0.810 0.047 2.733 0.704 
3 3.633 2.242 10.730 6.834 9.013 0.397 7.498 3.143 20.688 16.036 0.065 3.464 
4 1.215 3.963 7.675 0.843 1.265 3.743 0.253 0.217 1.650 2.795 5.035 2.339 
5 1.675 1.823 10.004 6.053 4.085 8.178 1.074 1.599 1.309 3.320 4.684 0.196 

Japan 
1 1.034 12,001 3.496 2.657 1.554 3.886 3.839 3.252 0.354 5.501 0.905 0.393 
2 10.801 3.462 0.398 0.373 1.421 0.147 2.232 5.688 2.142 2.016 4.351 1.660 
3 4.134 0.380 0.633 1.783 4.709 3.430 1.681 0.414 1.064 2.056 0.431 2.224 
4 0.146 1.813 3.040 0.007 5.408 1.296 0.534 2.249 1.119 1.961 0.916 7.716 
5 0.857 1.158 2.967 1.098 3.971 2.576 1.883 7.909 6.480 2.783 0.386 1.316 
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Table 4.8: LSTART statistics 

d\P 1 2 3 4 5 6 7 8 0 10 11 12 
Canada 
1 2.432 1.082 2.446 1.119 1.562 1.640 1.317 3.564 1.244 0.984 0.979 1.087 
2 1.238 0.979 0.723 1.257 2.275 2.976 4.434 2.328 0.737 0.851 1.652 1.966 
3 2.199 0.372 0.404 2.060 2.156 0.372 0.497 0.389 1.533 0.372 0.643 3.192 
4 0.270 0.404 1.335 0.019 1.314 2.598 0.049 0.063 0.012 0.589 0.300 0.184 
5 2.530 2.956 2.784 3.119 1.416 1.901 2.201 1.905 1.499 9.793 2.300 3.608 

France 
1 0.585 0.399 3.144 0.215 0.215 0.932 1.830 0.509 2.151 1.695 0.305 0.505 
2 0.762 0.760 1.025 1.873 0.774 2.068 4.288 1.122 1.002 0.663 0.858 1.529 
3 10.668 8.569 7.487 8.943 7.698 10.318 10.369 7.675 7.916 8.436 7.276 9.124 
4 0.219 1.791 1.119 0.252 0.994 0.301 4.786 1.083 2.823 0.237 0.680 2.963 
5 0.000 0.074 1.654 0.702 0.151 0.993 0.826 0.075 1.081 0.455 1.481 0.032 

Britain 
1 2.304 0.182 1.648 0.148 0.000 1.054 0.597 1.212 5.462 1.574 2.461 1.975 
2 0.177 0.272 0.040 0.322 1.041 2.605 3.178 0.318 0.083 0.066 0.963 0.508 
3 11.802 12.708 11.272 11.277 17870 11.194 11.468 11.336 11.795 11.466 11.169 11.268 
4 0.564 0.746 0.357 0.843 0.954 3.353 0.357 0.352 0.579 1.536 0.982 1.945 
5 2.015 2.619 9.945 4.037 4.089 7.926 2.009 2.284 1.967 4.359 4.811 2.107 

Japan 
1 1.034 ZJ62 3.900 0.841 1.596 1.284 4.005 2.915 1.073 0.881 1.201 1.172 
2 6.321 3.399 4.913 3.427 4.220 3.549 3.751 4.500 4.915 4.192 5.241 4.146 
3 3.096 0.753 0.629 1.942 2.766 3.990 2.202 0.925 1.972 0.696 0.624 1.891 
4 0.055 0.365 1,940 0.007 1.228 1.296 0.071 0.010 1.101 0.130 0.133 3.472 
5 1.051 0.919 2.782 1.132 3.940 2.278 2.540 0.614 6.607 1.548 0.788 1.234 
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But before the specific modeling, some general problems need to be addressed. 

The first issue is how to treat the relationship between the linearity test and nonlinear estimation. 

The usual way is to perform the test and then estimate the model according to the information provided 

by the test. For example, Terâsvirta and Anderson [116} conduct an LM type test of linearity against 

the STAR alternative on quarterly logarithmic production indices for 13 countries and Europe. After 

the test rejects linearity for most of the series, they go ahead to estimate the data by STAR model. 

But is the nonlinear model specified as the alternative model the best nonlinear model when linearity is 

rejected? Here, we do not take this for granted, and will conduct the LM linearity test and the nonlinear 

model selection separately to see if they really match. 

This naturally raises the question: what do we mean by the best model or the better model? In 

linear estimation, criteria such as AIC, SBC are widely used to pick the model. Here, the SBC is used 

for the model selection within AR models and across nonlinear models. The reason the SBC is preferred 

to the AIC is because the AIC tends to choose a less parsimonious model than the SBC does. It's 

commonly agreed that the RSS is not a good criterion to use in model selection because adding more 

parameters can always produce a smaller RSS. However, neither the AIC nor the SBC work very well 

when used to compare different types of models. The major reason is: 

The SBC or AIC can be affected by a lot of factors external to the model. For instance, the number 

of regressors in the regression, which could change as the estimation method changes. For example, 

when estimating an EAR model, if a grid search method is used instead of nonlinear least squares 

(NLS) regression, the estimated models could be very similar, while the NLS method will have one more 

regressor than the grid search method. So it is possible that sometimes the similar estimated models 

will have different SBC and AIC values. Also, the magnitudes of the SBC, AIC and RSS will be affected 

if we transform the data, even though nothing real changes. 

In Terâsvirta and Anderson's paper [116], the ratio of residual variances has been used to compare 

the AR model with the STAR model. We can see that comparing the residual variance ratio is nothing 

more than comparing RSS. And it is obviously unfair to compare an AR(6) model with at most 7 
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regressors with an LSTAR model with 13 parameters, and prefer the latter because the ratio of residual 

variances is less than one (p S125). 

Therefore, in this chapter, the RSS and AIC will not be used as a model selection criterion, though 

the RSS and the AIC (adjusted) will be displayed in relevant tables. The SBC will be used but will 

be adjusted according to model type and estimation method. For example, in the ESTAR estimation of 

Canadian dollar, there are 5 regr essors by the NLS: 3 for the AR terms, 1 for the ESTAR term, and 1 

for the estimation of 7. In the calculation of the adjusted SBC and AIC, the number of regressors will 

be recorded as 4, omitting 1 parameter for 7. 

4.5 Nonlinear Estimation 

First, we estimate the data series as an ESTAR model in the following form3: 

Note that the autoregressive terms 52i=i QiHt-i are those selected by the forward stepwise regression 

method in the linear estimation part. So an LM test with the null hypothesis 7 = 0 can be easily 

constructed, with the alternative model as equation (4.5) and the null model actually the estimated 

autoregressive model. In equation (4.5), 7 E (0, +00) controls the speed of the nonlinear adjustment in 

as the lag parameter. Here, we will choose the optimal value of d by SBC from the integers 1, 2, 3, 4, 

and 5. 

In this paper, the estimation procedures will be conducted by the RATS ( regression analysis of 

time series) software. The estimation methodology for ESTAR model is straightforward. Nonlinear 

least squares regressions of the dependent variable on the autoregressive terms and the possible expo­

nential autoregressive terms are conducted, which under the RATS software, are conducted by the NLLS 
3Since the data is demeaned, (4.5) is used instead of 

(4.5) 

the form of jl — exp —7 (yt-d — c)2 } The variable yt-d is the transition variable with d 

for estimation. 
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(nonlinear least squares) procedure using a Gauss-Newton algorithm with numerical partial derivatives. 

Then those ESTAR terms that produce the minimum SBC value are chosen. However, care must be 

taken with regard to the value of 7. Theoretically, 7 can take any value from 0 to +00. However, if 

7 is too large the software treats the value of 7 (yt-d — c)2 as a missing number. So, in the empirical 

programming, the upper limit of 7 is obtained such that 7 (yt-d — c)2 can be expressed by the software. 

Since there are lagged error terms in the bilinear cross-product, maximum likelihood estimation is 

employed to estimate the bilinear process. The bilinear terms are chosen one by one by the forward 

selection method with SBC as the criterion. And for RATS, there are three algorithms available to 

calculate the maximum of a likelihood function: the Simplex algorithm, the Bemdt-Hall-Hall-Hausman 

(BHHH) algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The simplex algo­

rithm is a search algorithm which does not require derivatives. The major disadvantage is that it can 

not provide standard errors for the estimated parameters. Both the BHHH and the BFGS algorithms 

assume that the likelihood function is twice differentiable. The BHHH algorithm is based on the result 

that the expected second derivatives matrix of the likelihood function is the covariance matrix of the 

first derivatives vectors of the likelihood function. The BFGS algorithm is a slight modification of the 

better known Davidon-Fletcher-Powell (DFP) algorithm. It is extremely effective and is among the most 

widely used gradient methods. So this paper will use the BFGS algorithm. 

The estimated ESTAR and BL models are listed in Table 4.9. All the countries have lower values 

of SBC and AIC when their exchange rates are estimated as nonlinear ESTAR and BL models instead 

of the linear AR model. 

The forward selection procedure with SBC as the criterion picks up the ESTAR model with the 

highest ESTABT statistic for Canada, France and Japan. The British pound is modeled as an ESTAR 

model with ESTART equal 16.036, which is the second largest ESTART statistic. Why there is such 

discrepancy between the test and the estimation? Estimation details of the ESTAR model for Great 

Britain are examined. The ESTAR model when p = 9 and d = 3 has a convergence problem. The final 

ESTAR model has the second largest ESTABT statistic 16.036, which is still very significant. 
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Table 4.9: Nonlinear estimation 

Estimated ESTAR and UL Models "SIC SBC" TtSS™ 
Canada 
yu=0.5247xyu_ 

(0.0001) 
yu=0.1446xy„_ 

(0.0040) 

FVance 
y2t =0.2561 xy2»_ 

(0.0000) 
y2, =0.2766 xy2t_ 

(0.0000) 

Britain 
y3i=0,3950xy3l_ 

(0.0000) 
y3,=0.4054xy3,_ 

(0.0000) 

Japan 
y4,=0.4625xy4l_|4-0.1509xy4l_i|-0.4522y4,_2x{l-exp[-0.0844x(y4(_,-0.5515)2)}+e( 

(0.0000) (0.0029) (0.0043) (0.2543) (0.4527) 
y4,=0.3942xy4,_i+0.l338xy4e_n+0.0688xy4(_I x f4,_2+0.0706xy4,_, x £4,_7-0.0530xy4,_5 x e4,_9+et 

(0.0000) (0.0102) (0.0001) (0.0003) (0.0021) 

+0.1185xyil_8+0.1223xyii_lo-0.5741yj(-jx{l-exp(-2.0775x(y„_2+0.1580)2]}+C| 
(0.0301) (0.0258) (O.OOOl) (0.1685) (0.2433) 

+0.1461 xyn_8+0.1474xyn_io+0.1653xyu_io x cu-s+fi 
(0.0083) (0.0084) (0.0025) 

+1.0379xy2,_6 x {l-exp[-0.0117x (y2,_3-0.2561)2|}+e, 
(0.7117) (0.7691) (0.2875) 

-ù.0528xy2 l _4 x £21-7+^1 
(0.0086) 

-0.1343 xy3i_2—1.5055 xy3i_ jo x {l-exp[-0.0093x (y3t_3+0.1783)2]}+£j 
(0.0143) (0.5474) (0.6413) (0.8348) 
-0.1069xy3i_2+0.0915xy3t_3 x E31-5-O.O731 xy3i_% x Est - i2-0.0591 x yst -5 x £31-0+^1 
(0.0180) (0.0002) (0.0001) (0.0003) 

1892.35 1907.50 323.83 

1898.38 1913.52 329.87 

2474.82 2482.40 1957.08 

2477.15 2484.72 1971.08 

2437.09 2448.45 1732.49 

2422.97 2441.91 1638.87 

2508.94 2520.30 2159.72 

2504.53 2523.46 2104.70 

Ï8 
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Terâsvirta [115] mentions that it is sometimes difficult for a nonlinear optimization procedure to 

converge while trying to estimate the ESTAR model parameters simultaneously. The reason is that the 

estimator of 7 tends to be very heavily negatively correlated with that of 9. He suggests to standardize 

the nonlinear part |l — exp ^—7 (yt-d — c)2j | by dividing it by the variance of the dependent variable 

y. Haggan and Ozaki [57] propose a grid search, method by keeping 7 fixed and using a grid of values 

to estimate it. We tried both methods for British pound. There was no convergence using Terasvirta's 

method, while for grid search, the model picks up either the starting value or the ending value of 7, 

which implies a problem of convergence again. Maybe we have to accept the fact that the ESTAR model 

is not sufficiently well specified for the British pound data. 

4.6 Forecasting 

In an effort to find a counter example of Meese and Rogoff's conclusion [81], and to show the possible 

superiority of nonlinear models over linear models of monthly nominal exchange rates, the in-sample and 

out-of-sample mean square prediction error for the nonlinear ESTAR and BL model are calculated and 

compared to those of the random walk without drift (RW) model, random walk with drift (RWD) 

model and linear AR model. The MSPE are calculated for forecasts from 1-step ahead up to 12-step 

ahead, which is appropriate for monthly exchange rate data. Since our linear and nonlinear models are 

estimated with the transformed data yu = 100 x {logxit — logri£_t} — c, with i = 1, 2, 3, 4, while the 

random walk specifications are based on the undifferentiated data, a transformation is needed so that 

the MSPEs are comparable. Suppose = 100 x logxu, then for the random walk model without drift, 

the fc-step ahead forecasts at time t will be 

A 
ei,t+fc|t = Ct.t-

No matter how far away the forecast in the future, the random walk model always predicts the forecasts 

will be the same as today's exchange rate. If a drift term di is included in the random walk model, the 

forecasts are calculated by 

êi,t+fc|t = e,-,£ •+• kdi. 
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For the AR, ESTAR and BL model, if the fc-step-ahead forecasts are expressed as yitt+k\t, then the 

forecasts of the magnified logarithm of the exchange rates are 

= Ci,t T +cZi) + (y«,£+2|t T <ii) H h {Vi,t+k\t t ck) . 

For the out-of-sample forecasts, the last five years are set aside for forecasting, and the data from 1973:2 

to 1996:3 are used for model estimation. Correspondent changes are made to the data means Ci, i = 1, 

2, 3, 4 and 5 in the data analysis procedure. The MSPEs of the in-sample and out-of-sample forecasts 

are shown in Tables 4.11 and 4.10, respectively. For each step, the minimum MSPE for the five models 

is underlined. 

When considering in-sample forecasts, the nonlinear models seems to do a relatively better job 

than the random walk models and the linear model. For Canada, the ESTAR model has 8 minimum 

MSPEs out of 12 MSPEs; the ESTAR model has the minimum MSPE for all 12 forecasts predicting 

French francs; when forecasting the British pound, the BL model is the best for 1-step and 2-step ahead 

forecasting, while the ESTAR model is the best for forecasts from 4-step ahead up to 10-step ahead; for 

Japan, the BL model produces the minimum MSPE at all forecast horizons. 

However, the nonlinear models are not always the best for ex-ante forecasts. For Canada, the 

random walk model with drift has a better forecast than any other model in 9 out of 12 cases. For the 

remaining three countries, the nonlinear models pick up most of the minimum MSPE: it is the ESTAR 

model for France and the BL model for Britain and Japan. 

We also provide the Diebold-Mariano (D-M) [33] test statistics which test the hypothesis that the 

median of the squared forecast errors difference is zero: 

Median (dt) = Median (e^t — e^t) = 0, 

where A and B are two forecasts, él
M and e?Bt are the squared forecast errors for them at time i. 

The D-M test statistic can be calculated according to the formula 
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Table 4.10: MSPEs for in-sample forecasts 

Model\Step 1 5 3 4 5 6 7 8 0 10 11 12 
Canada 
RW 1.129 2.627 4.065 5.590 7.264 8.907 10.550 12.311 14.428 16.724 19.439 22.423 
RWD 1.110 2,551 3.896 5.285 6.774 8.200 9.599 11.084 12.894 14.844 17.169 19.742 
AR 1.041 2.122 3.331 4.842 6.520 8.270 10.023 11.573 11.230 12.200 11.259 12.689 
BL 1.012 2.116 3.403 5.133 6.819 8.723 10.612 12.273 11.919 13.006 12.008 13.377 
ESTAR 0.993 2.078 3.358 4.817 6.467 8.156 9.941 11.526 11.398 11.962 10.989 11.603 

FVance 
RW 6.707 17,392 28.768 41.866 55.319 69.628 84.696 100.171 116.553 133.601 152.035 170.885 
RWD 6.694 17.343 28.653 41.651 54.956 69.079 83.920 99.148 115.272 132.031 150.102 168.555 
AR 6.166 12.854 21.920 34.096 46.701 60.514 75.042 90.022 106.003 122.477 140.287 158.342 
BL 6.046 12.673 22.110 34.837 47.738 61.329 75.975 91.717 107.445 124.114 141.595 159.279 
ESTAR 6.003 12.581 21.427 32.381 44.027 55.921 64.903 76.760 91.612 105.890 122.237 140.005 

Britain 
RW 6.442 17.490 28.630 40.485 52.582 64.432 76.385 88.179 100.526 113.447 126.614 140.357 
RWD 6.425 17.417 28.459 40.164 52.046 63.640 75.279 86.744 98.739 111.261 123.988 137.301 
AR 5.537 12.067 23.582 37.396 49.802 61.417 73.161 84.567 96.609 108.888 121.464 134.830 
BL 5.027 11.781 24.511 38.435 51.702 64.623 79.559 93.208 106.594 122.451 141.028 157.757 
ESTAR 5.314 11.974 24.224 36.977 48.857 60.529 71.619 82.510 94.568 108.833 126.451 142.986 

Japan 
RW 8.231 22.327 37.246 53.521 70.123 86.008 100.332 114.592 130.903 148.419 166.955 187.982 
RWD 8.155 22.015 36.553 52.276 68.136 83.079 96.222 109.058 123.744 139.382 155.845 174,518 
All 7.025 15.006 25.416 39.226 54.831 72.022 88.921 105.530 122.665 140.557 151.250 142.082 
BL 6.456 14.068 24.957 38.750 54.164 69.619 84.951 99.673 114.049 130.178 141.892 134.690 
ESTAR 6.625 14.988 29.506 45.439 62.045 80.161 98.309 115.680 133.353 152.225 163.723 152.493 
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Table 4.11: MSPEs for out-of-sample forecasts 

Hv!odel\Step 1 1 3 4 5 6 7 8 Û 10 11 12 
Canada 
RW 
RWD 
AR 
BL 
ESTAR 

1.399 
1.358 
1.501 
1.482 
1.453 

2.923 
2.787 
2.618 
2J2Z 
2.650 

4.140 
3.864 
4.064 
3.871 
4.092 

5.459 
4.973 
5.650 
5.329 
5.577 

7.164 
6.357 
8.093 
7.581 
7.896 

8.851 
7.678 

10.531 
9.823 

10.293 

10.048 
8.507 

12.443 
11.552 
12.179 

11.574 
9.637 

14.939 
13.801 
14.621 

13.137 
10.790 
13.633 
12.716 
13.773 

14.803 
12.062 
15.159 
14.027 
14.848 

16.526 
13.247 
11.680 
11 009 
11.699 

18.164 
14.450 
12.074 
11.390 
11.179 

FVance 
RW 
RWD 
AR 
BL 
ESTAR 

5,758 
5,645 
5,175 
5JZ1 
5.563 

14.967 
14.523 
10.893 
10.866 
12.550 

23.453 
22.473 
17.105 
17049 
18.561 

31.202 
29.398 
23.717 
23.637 
20.010 

37.726 
34.740 
29.228 
29.123 
22.258 

46.053 
41.611 
36.426 
36.304 
27.683 

56.086 
49.998 
44.470 
44.381 
34.934 

66.194 
58.275 
52.364 
52.326 
42.238 

76.044 
66.081 
60.236 
60.183 
48.639 

84.153 
72.016 
66.379 
66.276 
53.740 

94.133 
79.480 
74.280 
74.195 
62.069 

105.761 
88.413 
82.989 
82.929 
70.605 

Britain 
RW 
RWD 
AR 
BL 
ESTAR 

3.106 
3.100 
3.634 
3.686 
3.594 

6.201 
6.177 
3.952 
3.911 
3.931 

8.217 
8.193 
6.730 
6.238 
6.457 

10.239 
10.190 
9.875 
9.124 
9,164 

12.447 
12.266 
12.051 
11.300 
11.428 

15.666 
15.331 
14.950 
14.193 
14.350 

19.582 
19.053 
18.214 
17421 
17.601 

22.465 
21.830 
20.779 
19.896 
20.373 

24.768 
23.997 
23.549 
22.585 
23.122 

26.365 
25.452 
25.282 
24.317 
24.783 

27.829 
26.784 
26.749 
25.847 
26.983 

29.018 
28.042 
27.871 
27.075 
28.340 

Japan 
RW 
RWD 
AR 
BL 
ESTAR 

9.008 
9.204 
8.198 
7.994 
L258 

23.296 
24.002 
16.407 
14.636 
15,226 

38.659 
40.205 
28.116 
23.594 
29.625 

55.806 
58.503 
44.662 
37.468 
45.802 

68.185 
72.227 
57.047 
48.186 
57.787 

76.026 
81.703 
67.338 
59.109 
70.258 

80.176 
87.690 
75.125 
70.965 
82.951 

86.357 
96.468 
85.360 
85.611 
99.064 

100.792 
114.558 
103.734 
105.948 
118.620 

119.274 
137.324 
125.156 
128.158 
140.928 

140.936 
163.978 
150.135 
145.900 
156.208 

167.280 
195.793 
180.439 
150.254 
150.501 
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53 — nz±ii 

yr(T+I)(2T+l) ' 

where T is the forecast horizon, S3 = YÎt=i A- (^t) xrank(|dt|) with /+ (dt) = { 0 if d* < 0 • The 

D-M test statistic is asymptotically distributed standard normal, so at significance level 5%, the critical 

value of the D-M test is±1.96. 

Tables 4.12 and 4.13 include the D-M test statistics when forecast A is forecast from the RWD, 

AR, BL, or ESTAR model and the forecast B is from the RW model. Tables 4.14 and 4.15 list the D-M 

statistics testing the median of the squared forecast errors difference between forecasts from the AR, BL. 

or ESTAR model and forecasts from the RWD model. Statistics with absolute values that are smaller 

than 1.96 are marked with underlines. From these two tables, we can see that many forecast differences 

found in Tables 4.11 and 4.10 are insignificant. For example, the RWD model is not more accurate 

than the linear or nonlinear models for ex-ante forecasting of the Canada dollar; and for the British 

pound, the superiority of the ESTAR model in in-sample forecasting and the BL model in out-of-sample 

forecasting is not that solid after the forecasts by these two- nonlinear models are tested whether or not 

different from the forecasts from the random walk type models. 

Here we establish a counter example for Meese and Rogoff*. For the out-of-sample forecasting 

accuracy measured by the traditional MSPE, the random walk is not always the best. And the random 

walk model without drift is not always better than the random walk model with drift. However, although 

the foreign exchange rate data for the four countries are tested and estimated to have nonlinearities, 

there is no unanimous conclusion to be drawn in favor of the nonlinear model either when it comes to 

the forecasting. Which will win the battle in out-of sample forecasting? The ESTAR model? The BL 

model? The random walk model? Or the AR model? There is simply no conclusive conclusion to make. 

It depends on the country, on the forecast horizon, on the data length, on the measurement, etc. Maybe 

that is why the topic is still attractive after so many years. 

4 Maybe not exactly for the example Meese and Rogoff give in their 1983 paper, since we use monthly average data and 
they use monthly point-sample data. 
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Table 4.12: D-M statistics for in-sample forecasts with RW as the base model 

Model\Step 1 2 3 4 5 6 7 8 Ô 10 11 12 
Canada 
RWD.RW 
AR.RW 
BL-RW 
ESTAR-RW 

-0.969 
-2.392 
-3.025 
-3.335 

-1,250 
-4.627 
-3.499 
-5.085 

-1.513 
-3.920 
-2.580 
-4.193 

-1.829 
-2.331 
-O.579 
-2.995 

-2.247 
-2.142 
-0.704 
-2.795 

-2.591 
-1.733 
0.144 

-2.231 

-2.860 
-I.209 
0.191 

-1.802 

-3.069 
-1.533 
-0.161 
-2.013 

-3.161 
-3.890 
-2.771 
-3.899 

-3.295 
-4.932 
-3.715 
-5.196 

-3.324 
-7.351 
-6.158 
-7.612 

-3.277 
-7.570 
-6.454 
-8.673 

FYance 
RWDJIW 
AR-RW 
BL-RW 
ESTAR-RW 

-0.504 
-3.077 
-3,657 
-3.313 

-0,370 
-10.929 
-9.911 
-9.924 

-O.372 
-12.149 
-9.226 
-9.594 

-0.481 
-10.355 
-6.538 
-8.315 

-0.620 
-8.881 
-5.482 
-8.204 

-O.799 
-7.641 
-5.303 
-8.388 

-0.990 
-6.884 
-5.213 
-9.932 

-1.023 
-6.546 
-5.101 

-10.628 

-1.103 
-5.962 
-4.934 

-10.246 

-I.227 
-5.249 
-4.599 
-9.676 

-1.352 
-4.726 
-4.370 
-9.433 

-1.456 
-4.448 
-4.233 
-8.936 

Britain 
RWD.RW 
AR-RW 
BL-RW 
ESTAR.RW 

-0.189 
-3,275 
-2.828 
-3,301 

-0.394 
-11.100 
-6.515 
-9.809 

-O.372 
-6.759 
-3.566 
-5.475 

-0.255 
-2.804 
-1.232 
-2.534 

-0.197 
-1.482 
0.022 

-1.698 

-0.255 
-0.799 
0.454 

-1.367 

-0.444 
-1.026 
0.363 

-1.499 

-0.591 
-1.109 
0.314 

-I.274 

-0.703 
-O.974 
0.644 

-1.067 

-0.835 
-1.014 
0.958 

-0.796 

-0.904 
-0.Q26 
1.190 
0.100 

-I.OO7 
-0.987 
1.262 
0.556 

Japan 
RWD-RW 
AR-RW 
BL.RW 
ESTAR.RW 

0.071 
-2.611 
-3.578 
-2.727 

-0.252 
-8.595 
-7.894 
-8.375 

-0.534 
-8.400 
-7.558 
-6.746 

-0.709 
-7.231 
-6.524 
-5.096 

-0.894 
-5.484 
-5.411 
-3.542 

-1.137 
-3.905 
-4.243 
-2.101 

-1.419 
-2.955 
-3.203 
-1.281 

-I.732 
-2.307 
-2.975 
-0.831 

-1.929 
-1.981 
-2.995 
-0.578 

-2.123 
-2.149 
-3.109 
-0.877 

-2.230 
-2.554 
-3.420 
-1.346 

-2.378 
-4.760 
-5.321 
-3.739 
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Table 4,13: D-M statistics for out-of-sample forecasts with RW as the base model 

Model\Step 1 1 3 4 5 6 7 8 9 10 11 12 
Canada 
RWD.RW 
AR.RW 
BL.RW 
ESTAR-RW 

-0.906 
0.501 
0.398 
0.442 

-1.141 
-1701 
-1.988 
-1.796 

-1.001 
-1,237 
-1.450 
-1.568 

-1.325 
-0.685 
=0.979 
-1.163 

-1.642 
-0.486 
-0.832 
-0.736 

-1.944 
-O.295 
-0.530 
-0.302 

-2.039 
-O.O59 
-0.302 
-0.037 

-2.025 
-0.037 
-0.376 
0.155 

-1.958 
-O.994 
-1.296 
-0.766 

-2.025 
-0.758 
-O.92O 
-0.766 

-2.047 
-2.172 
-2.429 
-2.032 

-2.054 
-1.958 
-2.319 
-2.312 

FYance 
RWD-RW 
AR.RW 
BL.RW 
ESTAR-RW 

-2.142 
-1,487 
-1.472 
-0.832 

-2.459 
-4.925 
-4.932 
-2.002 

-2.716 
-5.293 
-5.323 
-2.555 

-3.033 
-5.050 
-5.087 
-4.837 

-3.673 
-4.866 
-4.851 
-5.661 

-4.240 
-4.594 
-4.572 
-5.477 

-4.763 
-4.756 
-4.719 
-5.381 

-4.829 
-5.242 
-5.242 
-5.433 

-5.013 
-5.588 
-5.580 
-5.669 

-5.249 
-5.595 
-5.588 
-5.956 

-5.396 
-5.448 
-5.462 
-5.801 

-5.543 
-5.455 
-5.477 
-5.985 

Britain 
RWD-RW 
AR.RW 
BL-RW 
ESTAR-RW 

0.015 
0.979 
1.112 
0.891 

-0.368 
-3.696 
-3.674 
-3.755 

-O.295 
-2,260 
-3.423 
-2.753 

-0.169 
-0.641 
-1.590 
-1.031 

-0.110 
-0.169 
-0.825 
-0.236 

-0.169 
-0.236 
-0.633 
-0.118 

-0.191 
-O.95O 
-1.546 
-O.7O7 

-0.103 
-0.633 
-1.134 
-0.324 

-0.199 
-0.368 
-O.722 
-0.184 

-0.221 
-0.611 
-0.825 
-0.339 

-0.265 
-0.353 
-0.641 
-0.066 

-O.272 
-0.376 
-0.626 
-0.052 

Japan 
RWD-RW 
AR-RW 
BL-RW 
ESTAR-RW 

1.605 
0.221 

-0.133 
-0.501 

1.980 
-3.777 
-3.651 
-3.401 

2.113 
-2.452 
-4.152 
-3.269 

2.128 
-1.318 
-3.593 
-2.371 

2.047 
-0.243 
-2,768 
-1.605 

2.113 
0.957 

-1.480 
-0.442 

2.069 
1.414 

-0.552 
0.250 

2.017 
1.141 
0.052 
QJ22 

1,973 
0.920 

-0.020 
0.876 

2.054 
QJ14 
0.110 
1.001 

2.260 
0.883 

-0.206 
ÇL523 

2.665 
1.509 

-0.898 
-0.758 
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Table 4.14: D-M statistics for in-sample forecasts with RWD as the base model 

Model\Step 1 1 5 4 5 6 7 8 Ô 10 11 12 
Canada 
AR.RWD 
BL-RWD 
ESTAR-RWD 

-2.642 
-2.595 
-3.102 

-4.897 
-3.844 
-5.016 

-4.381 
-2.744 
-4.564 

-2.392 
-0.238 
-2.518 

-1.525 
-0.332 
-1.513 

-0.844 
0.252 

-1.679 

-0.009 
0.758 
0.106 

-0.280 
0.473 

-0.140 

-2.844 
-2.313 
-2.458 

-3.965 
-3.359 
-3.898 

-6.907 
-6.076 
-6.721 

-7.362 
-6.512 
-7.702 

FYance 
AR-RWD 
BL-RWD 
ESTAR-RWD 

-3.198 
-3.820 
-3.355 

-11.303 
-10.046 
-9.932 

-13.203 
-9.763 
-9.919 

-12.275 
-7.259 
-8.637 

-11.497 
-6.333 
-8.273 

-10.325 
-5.786 
-8.496 

-9.738 
-5.773 

-10.358 

-9.460 
-5.595 

-11.409 

-9.070 
-5.551 

-11.268 

-8.571 
-5.382 

-11.001 

-8.166 
-5.299 

-10.885 

-7.959 
-5.172 

-10.599 

Britain 
AR.RWD 
BL.RWD 
ESTAR-RWD 

-2.991 
-2.706 
-3.292 

-11.281 
-6.330 

-10.118 

-7.384 
-3.175 
-5.991 

-3.454 
-1.403 
-3.450 

-2.263 
-0.015 
-2.799 

-2.017 
0.380 

-2.522 

-2.428 
0.258 

-2.485 

-2.397 
0.316 

-2.294 

-2.228 
0.869 

-2.268 

-2.403 
1.417 

-2.166 

-2.336 
1.593 

-0.667 

-2.244 
1.783 
0.326 

Japan 
AR-RWD 
BL.RWD 
ESTAR-RWD 

-2,841 
-3.865 
-3.122 

-9.378 
-8.144 
-9.031 

-9.436 
-7.666 
-7.007 

-7.853 
-6.479 
-5.179 

-6.039 
-5.112 
-3.682 

-3.883 
-3.544 
-1.779 

-2.715 
-2.735 
-0.822 

-1.897 
-2.187 
-0.241 

-1.191 
-1.995 
0.303 

-1.133 
-2.076 
0.206 

-I.575 
-2.483 
-0.257 

-4.217 
-4.859 
-2.816 
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Table 4.15: D-M statistics for out-of-sample forecasts with RWD as the base model 

Model\Step 1 2 3 4 5 6 7 8 Ô 10 11 12 
Canada 
AR-RWD 
BL-RWD 
ESTAR-RWD 

1.045 
0.913 
0.802 

-1.296 
-1.553 
-1.443 

-1.068 
-1.288 
-1 119 

-0.199 
-0.604 
-0.390 

0.287 
-0.110 
0JS2 

0.979 
0.825 
LliS 

LfidZ 
0.942 
035Z 

L2Z4 
1.068 
LÛS2 

0.169 
-0.110 
0.250 

0.376 
-0.015 
0.368 

-1.671 
-1.760 
-1465 

-1.487 
-1.782 
-1789 

FYance 
AR-RWD 
BL-RWD 
ESTAR-RWD 

-1414 
-1.406 
-0.795 

-4.874 
-4.918 
-2.142 

-5.404 
-5.462 
-2.547 

-5.293 
-5.300 
-4.815 

-4.837 
-4.866 
-5.669 

-3.769 
-3.813 
-5.330 

-3.210 
-3.173 
-4.667 

-3.585 
-3.578 
-4.528 

-3.710 
-3.666 
-4.859 

-3.431 
-3.409 
-5.131 

-3.224 
-3.188 
-4.866 

-2.908 
-2.915 
-4.719 

Britain 
AR-RWD 
BL-RWD 
ESTAR-RWD 

0.979 
1.229 
0.891 

-3.718 
-3.659 
-3.975 

-2.172 
-2.790 
-2.621 

-0.420 
-1.112 
-1.252 

-0.110 
-0.567 
-0.501 

-0.103 
-0.398 
-0.471 

-0.832 
-1.325 
-0.729 

-0.405 
-0.906 
-0.206 

0.081 
-0.471 
0.169 

-0.515 
-0.876 
-0.317 

-0.250 
-0.773 
0.147 

0.000 
-0.545 
0.611 

Japan 
AR-RWD 
BL.RWD 
ESTAR-RWD 

-0.618 
-0.663 
-1.053 

-5,190 
-4.550 
-4.285 

-5.750 
-5.050 
-3.747 

-5.926 
-5.080 
-3.563 

-6.022 
-4.741 
-3.033 

-5.205 
-3.732 
-1.944 

-4.469 
-2.584 
-0.972 

-4.262 
-1.855 
-0.611 

-3.939 
-1.634 
-0.442 

-3.968 
-1.274 
-0.346 

-4.255 
-1-737 
-0.825 

-4.189 
-2.746 
-2.186 



www.manaraa.com

102 

BIBLIOGRAPHY 

[1] Aitchison, J., and Silvey, S. (1958). "Maximum-likelihood Estimation of Parameters Subject to 
Restraints". Annals of Mathematical Statistics, 29: 813-828. 

[2] Aitchison, J., and Silvey, S. (1960). "Maximum-likelihood Estimation Procedures and Associated 
Tests of Significance". Journal of the Royal Statistical Society, Series B, 22: 154-171. 

[3] Ashley, R., Patterson, D., and Hinich, M. (1986). "A Diagnostic Test for Non-linear Serial Depen­
dence in Time Series Fitting Errors". Journal of Time Series Analysis, 7: 165-178. 

[4] Bacon, D., and Watts, D. (1971). "Estimating the Transition Between Two Intersecting Straight 
Lines". Biometrika, 58: 525-534. 

[5] Baillie, R., and Bollerslev, T. (1989). "The Message in Daily Exchange Rates". Journal of Eco­
nomics and Business Statistics, 7: 297-305. 

[6] Balke, N., and Fomby, T. (1997). "Threshold Cointegration". International Economic Review, 38: 
627-643. 

[7] Barnett, W., Medio, M., and Serletis, A. (1997). "Nonlinear and Complex Dynamics in Eco­
nomics". Washington University in St. Louis, Economics Working Paper Archive, no. WAB-97-13 
(24 September). 

[8] Baum, C., Barkoulas, J., and Caglayan, M. (2001). "Nonlinear Adjustment to Purchasing Power 
Parity in the Post-Bretton Woods Era". Journal of International Money and Finance, 20: 379-399. 

[9] Beaudry, P., and Koop, G. (1993). "Do Recessions Permanently Change Output?". Journal of 
Monetary Economics, 31: 149-163. 

[10] Bollerslev, T. (1986). "Generalized Autoregressive Conditional Heteroskedastidty". Journal of 
Econometrics, 31: 307-327. 



www.manaraa.com

103 

[11] Bollerslev, T., Chou, R., and Kroner, K. (1992). "ARCH Modeling in Finance". Journal of Econo­
metrics, 52: 5-59. 

[12] Bollerslev, T., Engle, R., and Nelson, D. (1994). "ARCH Models". Handbook of Econometrics, Vol. 
IV, 2959-3038, Engle, R., and McFadden, D. (Eds.). North-holland, Amsterdam. 

[13] Breusch, T. (1980). "Useful Invariance Results for Generalized Regression Models". Journal of 
Econometrics, 13: 327-340. 

[14] Breusch, T., and Pagan, A. (1979). "A Simple Test for Heteroskedasticity and Random Coefficient 
Variation". Econometrics, 47: 1287-1294. 

[15] Brock, W., Dechert, W., and Scheinkman, J. (1987). "A Test for Independence Based on the 
Correlation Dimension". University of Wisconsin at Madison, Social Systems Research Institute 
Working Paper, no. 8702; reprinted in Dynamic Econometric Modelling: Proceedings of the Third 
International Symposium on Economic Theory and Econometrics, 1988, Barnett, W., Berndt, E., 
and White, H. (Eds). Cambridge University Press, Cambridge. 

[16] Brock, W., Dechert, W., Scheinkman, J., and LeBaron, B. (1996). "A Test for Independence Based 
on the Correlation Dimension". Econometric Review, 15: 197-235. 

[17] Brock, W., and Hommes, C. (1998). "Heterogeneous Beliefs and Routes to Chaos in a Simple Asset 
Pricing Model". Journal of Economic Dynamics and Control, 22: 1235-1274. 

[18] Brock, W., Hsieh, D., and LeBaron, B. (1991). Nonlinear Dynamics, Chaos, and Instabilities: 
Statistical Theory and Economic Evidence. MJ.T. Press, Reading, Massachusetts. 

[19] Brock, W., and Sayers, C. (1988). "Is the Business Cycle Characterized by Deterministic Chaos?". 
Journal of Monetary Economics, 22: 71-90. 

[20] Brockett, R. (1976). "Volterra Series and Geometric Control Theory". Automatica, 12: 61-72. 

[21] Burgess, S. (1992). "Nonlinear Dynamics in a Structural Model of Employment". Journal of Applied 
Econometrics, 7: 101-118. 

[22] Byers, J., and Peel, D. (1995). "Bilinear Quadratic ARCH and Volatility Spillovers in Inter-war 
Exchange Rates". Applied Economics Letters, 2: 215-219. 



www.manaraa.com

104 

[23] Cao, C., and Tsay, R. (1992). "Nonlinear Time-Series Analysis of Stock Volatilities". Journal of 
Applied Econometrics, 7: S165-S185. 

[24] Clements, M., and Krolzig, H. (1998). "A Comparison of the Forecast Performance of Markov-
switching and Threshold Autoregressive Models of US GNP". Econometrics Journal, 1: C47-C75. 

[25] Clements, M., and Smith, J. (1997). "The Performance of Alternative Forecasting Methods for 
SETAR Models". International Journal of Forecasting, 13: 463-475. 

[26] Clements, M., and Smith, J. (1999). "A Monte Carlo Study of the Forecasting Performance of 
Empirical SETAR Models". Journal of Applied Econometrics, 14: 123-141. 

[27] Clements, M., and Smith, J. (2001). "Evaluating Forecasts from SETAR Models of Exchange 
Rates". Journal of International Money and Finance, 20: 133-148. 

[28] Crowder, M. (1976). "Maximum Likelihood Estimation for Dependent Observation". Journal of 
the Royal Statistical Society, Series B, 24: 406-424. 

[29] De Grauwe, P., Dewachter, H., and Embrechts, M. (1993). Exchange Rates Theory: Chaotic Models 
of Foreign Exchange Markets. Blackweil. 

[30] Dickey, D., and Fuller, W. (1979). "Distribution of the Estimates for Autoregressive Time Series 
with a Unit Root". Journal of the American Statistical Association, 74: 427-431. 

[31] Dickey, D., and Fuller, W. (1981). "Likelihood Ratio Statistics for Autoregressive Time Series with 
a Unit Root". Econometrica, 49: 1057-1072. 

[32] Dickey, D., and Pantula S. (1987). "Determining the Order of Differencing in Autoregressive Pro­
cesses". Journal of Business and Economics Statistics, 15: 455-461. 

[33] Diebold, F-, and Mariano, R. (1995). "Comparing Predictive Accuracy". Journal of Business and 
Economic Statistics, 13: 253-263. 

[34] Diebold, F., and Nason, J. (1990). "Non-parametric Exchange Rate Prediction?". Journal of In­
ternational Economics, 28: 315-322. 

[35] Diebold, F., and Pauly, P. (1986). "Evidence on the Small Sample Properties of Some Asymptoti­



www.manaraa.com

105 

cally Equivalent Tests for Autoregressive Conditional Heteroskedasticity". Paper presented to the 
Econometric Society European Meeting, Budapest. 

[36] Dumas, B. (1992). "Dynamic Equilibrium and the Real Exchange Rate in a Spatially Separated 
World". Review of Financial Studies, 5(2): 153-180. 

[37] Edison, H. (1987). "Purchasing Power Parity in the Long Run, A Test of the Dollar/Pound Ex­
change Rate (1890-1978)". Journal of Money, Credit, and Banking, 19: 376-387. 

[38] Efron, B. (1979). "Bootstrap Methods: Another Look at the Jackknife". The Annals of Statistics. 
7: 1-26. 

[39] Efron, B., and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall, New 
York. 

[40] Eitrheim, 0., and Terasvirta, T. (1996). "Testing the Adequacy of Smooth Transition Autoregres­
sive Models". Journal of Econometrics, 74: 59-75. 

[41] Enders, W., and Granger, C. (1998). "Unit-root Tests and Asymmetric Adjustment with an Ex­
ample Using the Term Structure of Interest Rates". Journal of Business and Economic Statistics, 
16: 304-311. 

[42] Engel, C. (1994). "Can the Markov Switching Model Forecast Exchange Rates". Journal of Inter­
national Economics, 36: 151-165. 

[43] Engel, C., and Hamilton, J. (1990). "Long Swings in the Dollar: Are They in the Data and Do 
Markets Know it?". American Economic Review, 80: 689-713. 

[44] Engle, R. (1982). "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance 
of United Kingdom Inflation". Econometrica, 50: 987-1008. 

[45] Engle, R. (1995). ARCH: Selected Readings. Oxford University Press, Oxford, UK. 

[46] Engle, R., and Ng, V. (1993). "Measuring and Testing the Impact of News and Volatility". Journal 
of Finance, 5: 1749-1778. 

[47] Flood, R., Rose, A., and Mathieson, D. (1990). "Is the EMS the Perfect Fix? An Empirical 



www.manaraa.com

106 

Exploration of Exchange Rate Target Zones". Board of Governors of the Federal Reserve System. 
International Finance Discussion Paper No. 388. 

[48] Frankel, J. (1986). "International Capital Mobility and Crowding-out in the US Economy: Imper­
fect Integration of Financial Markets or Goods Markets". How Open is the US Economy?, 33-67, 
Hafer, R. (Ed.). Lexington Books. 

[49] French, M., and Sichel, D. (1993). "Cyclical Patterns in the Variance of Economics Activity". 
Journal of Business and Economic Statistics, 11: 113-119. 

[50] Ghysels, E., Harvey, A., and Renault, E. (1996). "Stochastic Volatility". Handbook of Statistics, 
Vol. 14, 119-191, Maddala, G. (Ed.). North Holland, Amsterdam. 

[51] Granger, C., and Anderson, A. (1978). Introduction to Bilinear Time Series Models. Vandenhoeck 
and Ruprect, Gottingen. 

[52] Granger, C., and Anderson, A. (1978). Nonlinear Time Series Modelling in Applied Time Series 
Analysis, Findley, F. (Ed). New York, Academic Press. 

[53] Granger, C., and Terâsvirta, T. (1993). Modelling Nonlinear Economic Relationships. Oxford, 
U.K.: Oxford University Press. 

[54] Guegan, D., and Pham, T. (1992). "Power of the Score Test against Bilinear Time Series Models". 
Statistics Sinica, 2: 157-169. 

[55] Guillaume, 0., Dacorogna, M., Dave, R, Muller, U., Olsen, R., and Pictet, O. (1997). "From the 
Bird's Eye to the Microscope: A Survey of New Stylized Facts of the Intra-daily Foreign Exchange 
Markets". Finance and Stochastics, 1: 95-129. 

[56] Haggan, V., and Oyetunji, O. (1980). "On the Selection of Subset Autoregressive Time Series 
Models". UMIST Tech. Report 124, Department of Mathematics, UMIST. 

[57] Haggan, V., and Ozaki, T. (1981). "Modelling Nonlinear Random Vibrations Using an Amplitude-
dependent Autoregressive Time-series Model". Biometrika, 68: 189-196. 

[58] Hamilton, J. (1989). "A New Approach to the Economic Analysis of Nonstationary time Series 
and the Business Cycle". Econometrica, 57: 357-384. 



www.manaraa.com

107 

[59] Hansen, B. (1996). "Inference when A Nuisance Parameter is not Identified under the Null Hy­
pothesis". Econometrica, 64: 413-430. 

[60] Hansen, B. (1997). "Inference in TAR models". Studies in Nonlinear Dynamics and Econometrics. 
1(2): 1-14. 

[61] Hansen, B. (1999). "Testing for Linearity". Journal of Economic Surveys, 13: 551-576. 

[62] Harvey, A. (1981). The Econometric Analysis of Time Series. Philip Allan, Deddington. 

[63] Hinich, M. (1982). "Testing for Gaussianity and Linearity of a Stationary Time Series". Journal 
of Time Series Analysis, 3: 169-176. 

[64] Hjorth, J. (1994). Computer Intensive Statistical Methods Validation Model Selection and Boot­
strap. Chapman and Hail, London. 

[65] Hsieh, D. (1989). "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates". Journal 
of Business, 62: 339-368. 

[66] Hsieh, D. (1992). "A Nonlinear Stochastic Rational Expectations Model of Exchange Rates". 
Journal of International Money and Finance, 11: 235-250. 

[67] Kanzler, L. (1999). "Very Fast and Correctly Sized Estimation of the BDS Statistic". Working 
paper, Christ Church, Oxford University, England. 

[68] Keenan, D. (1985). "A Turkey Non-additivity-type Test for Time Series Nonlinearity". Biometrika, 
72: 39-44. 

[69] Keynes, J. (1936). The General Theory of Employment, Interest and Money. Macmillan, London. 

[70] Kilian, L., and Taylor, M. (2001). "Why is it so Difficult to Beat the Random Walk Forecast 
of Exchange Rates?". Revised version of Department of Economics Working Paper No. 01-01. 
University of Michigan. 

[71] Krâger, H., and Kugler, P. (1993). "Non-linearities in Foreign Exchange Markets: A Different 
Perspective". Journal of International Money and Finance, 12: 195-208. 



www.manaraa.com

108 

[72) Lawrance, A., and Lewis, P. (1977). "An Exponential Moving Average Sequence and Point Process, 
EMA(l)". Journal of Applied Probability, 14: 98-113. 

[73) Lawrance, A., and Lewis, P. (1980). "The Exponential Autoregressive-Moving Average 
EARMA(p, q) Process". Journal of the Royal Statistical Society, B42: 150-161. 

[74] LeBaron, B. (1997). "A Fast Algorithm for the BDS Statistic". Studies in Nonlinear Dynamics 
and Econometrics, vol. 2, no. 2, 53-59. 

[75] LePage, U., and Billard, L. (1992). Exploring the Limits of Bootstrap. John Wiley, New York. 

[76] Leybourne, S., and Mizen, P. (1999). "Understanding the Disinflation in Australia, Canada and 
New Zealand using Evidence from Smooth Transition Analysis". Journal of International Money 
and Finance, 18: 799-816. 

[77] Luukkonen, R., Saikkonen, P., and Terâsvirta, T. (1988). "Testing Linearity in Univariate Time 
Series Models". Scandinavian Journal of Statistics, 15: 161-175. 

[78] Luukkonen, R., Saikkonen, P., and Terâsvirta, T. (1988). "Testing Linearity against Smooth Tran­
sition Autoregressive Models". Biometrika, 75: 491-499. 

[79] Maravall, A. (1983). "An Application of Nonlinear Time Series Forecasting". Journal of Business 
and Economic Statistics, 1: 66-74. 

[80] McLeod, A., and Li, W. (1983). "Diagnostic Checking ARMA Time Series Models Using Squared-
residual Autocorrelations". Journal of Time Series Analysis, 4: 269-273. 

[81] Meese, R., and Rogoff, K. (1983). "Empirical Exchange Rate Models of the Seventies: Do They 
Fit Out-of-sample?". Journal of International Economics, 14: 3-24. 

[82] Meese, R., and Rose, A. (1991). "An Empirical Assessment of Non-Linearities in Models of Ex­
change Rate Determination". Review of Economic Studies, 58: 603-619. 

[83] Michael, P., Nobay, A., and Peel, D. (1997). "Transactions Costs and Nonlinear Adjustment in 
Real Exchange Rates: an Empirical Investigation". Journal of Political Economics, 105: 862-879. 



www.manaraa.com

109 

[84] Mitchell, W. (1927). Business Cycles. The Problem and its Setting. National Bureau of Economic 
Research, New York. 

[85] Mohler, R. (1973). Bilinear Control Processes: with Applications to Engineering, Ecology, and 
Medicine. New York, Academic Press. 

[86] Neftci, S. (1984). "Are Economic Time Series Asymmetric over the Business Cycle?". Journal of 
Political Economy, 92: 11-48. 

[87] Nelson, D. (1991). "Conditional Heteroskedasticity in Asset Returns: A New Approach". Econo­
metrica, 59: 347-370. 

[88] Neter, J., Kutner, M., Nachtsheim, C., and Wasserman, W. (1996). Applied Linear Statistical 
Models. Irwin. 

[89] Nychka, D., Ellner, S., Gallant, R., and McCaffrey, D. (1992). "Finding Chaos in Noisy Systems". 
Journal of the Royal Statistical Society, B54(2): 399-426. 

[90] Ôcal, N., and Osborn, D. (2000). "Business Cycle Non-linearities in UK Consumption and Pro­
duction" . Journal of Applied Econometrics, 15: 27-43. 

[91] Ozaki, T. (1980). "Non-linear Time-series Models for Non-linear Random Vibrations". Journal of 
Applied Probability, 17: 84-93. 

[92] Ozaki, T., and Oda, H. (1978). "Non-linear Time Series Model Identification by Akaike's Informa­
tion Criterion". Proc. IFAC Workshop on Information and Systems, Compeign, France. October, 
1977. 

[93] Pagan, A. (1978). "Some Simple Tests for Nonlinear Time Series Models". CORE Discussion Paper 
no. 7812. 

[94] Peel, D., and Speight, A. (1998). "The Nonlinear Time Series Properties of Unemployment Rates: 
Some Further Evidence". Applied Economics, 30: 287-294. 

[95] Peel, D., and Speight, A. (1998). "Modelling Business Cycle Nonlinearity in Conditional Mean and 
Conditional Variance: Some International and Sectoral Evidence". Economics, 65: 211-229. 



www.manaraa.com

110 

[96] Pesaran, M., and Potter, S. (1997). "A Floor and Ceiling Model of US Output". Journal of 
Economic Dynamics and Control, 21: 661-695. 

[97] Peters, E. (1994). Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. 
John Wiley and Sons. 

[98] Petruccelli, J., and Davies, N. (1986). "A Portmanteau Test for Self-Exciting Threshold 
Autoregressive-Type Nonlinearity in Time Series". Biometrika, 73: 687-694. 

[99] Phillips, P. (1987). "Time Series Regression with Unit Roots". Econometrica, 55: 277-302. 

[100] Phillips, P., and Perron, P. (1988). "Testing for a Unit Roots in Time series Regression". 
Biometrika, 75: 335-346. 

[101] Pippenger, M., and Goering, G. (1998). "Exchange Rate Forecasting: Results from a Threshold 
Autoregressive Model". Open Economies Review, 9: 157-170. 

[102] Potter, S. (1995). "A Nonlinear Approach to US GNP". Journal of Applied Econometrics, 10: 
109-125. 

[103] Rose, A., and Svensson, L. (1991). "Expected and Predicted Realignments: the FF/DM Exchange 
Rate During the EMS". Board of Governors of the Federal Reserve System. International Finance 
Discussion Paper No. 395. 

[104] Rothman, P. (1991). "Further Evidence on the Asymmetric Behavior of Unemployment Rates over 
the Business Cycle". Journal of Macroeconomics, spring: 291-298. 

[105] Rothman, P. (1998). "Forecasting Asymmetric Unemployment Rates". The Review of Economics 
and Statistics, 80(1): 164-168. 

[106] Saikkonen, P., and Luukkonen, R (1988). "Lagrange Multiplier Test for Testing Non-linearities in 
Time Series Models". Scandinavian Journal of Statistics, 15: 55-68. 

[107] Sarantis, N. (1999). "Modeling Non-linearities in Real Effective Exchange Rates", Journal of In­
ternational Money and Finance, 18: 27-45. 



www.manaraa.com

Ill 

[108] Sercu, P., Uppal, R., and Van Huue, C. (1995). "The Exchange Rate in the Presence of Transactions 
Costs: Implications for Tests of Purchasing Power Parity". Journal of Finance, 50(4): 1309-1319. 

[109] Shephard, N. (1996). "Statistical Aspects of ARCH and Stochastic Volatility Models". Time Series 
Models in Econometrics, Finance, and Other Fields, 1-67, Cox, D., Hinkley, D., and Barndorff-
Nielsen, O. (Eds.). Chapman and Hall, London, UK. 

[110] Sichel, D. (1993). "Business Cycle Asymmetry: A Deeper Look". Economic Inquiry, 31: 224-236. 

[Ill] Subba Rao, T., and Gabr, M. (1980). "A Test for Linearity of Stationary Time Series". Journal 
of Time Series Analysis, 1: 145-152. 

[112] Subba Rao, T., and Gabr, M. (1984). An Introduction to Bispectral Analysis and Bilinear Time 
Series Models, Springer-Verlag. 

[113] Taylor, M., and Peel, D. (2000). "Nonlinear Adjustment, Long-run Equilibrium and Exchange 
Rate Fundamentals". Journal of International Money and Finance, 19: 33-53. 

[114] Taylor, M., Peel, D., and Samo, L. (2001). "Nonlinear Adjustment in Real Exchange Rates: Toward 
a Solution to the Purchasing Power Parity Puzzles". International Economic Review, forthcoming. 

[115] Terâsvirta, T. (1994). "Specification, Estimation, and Evaluation of Smooth Transition Autore­
gressive Models". Journal of the American Statistical Association, 89: 208-218. 

[116] Terâsvirta, T., and Anderson, H. (1992). "Characterizing Nonlinearities in Business Cycles Using 
Smooth Transition Autoregressive Models". Journal of Applied Econometrics, 7: S119-S136. 

[117] Terdik, G. (1999). Bilinear Stochastic Models and Related Problems of Nonlinear Time Series 
Analysis. Springer. 

[118] Tiao, G., and Tsay, R. (1994). "Some Advances in Nonlinear and Adaptive Modeling in Time 
Series Analysis". Journal of Forecasting, 13: 109-131. 

[119] Tong, H. (1978). On a Threshold Model in Pattern Recognition and Signal Processing, Chen, C. 
(Ed.). Amsterdam: Sijhoff Sc Noordhoff. 



www.manaraa.com

112 

[120] Tong, H. (1983). Threshold. Models in Nonlinear Time Series Analysis (Lecture Notes in Statistics 
No. 21 ). New York: Springer-Verlag. 

[121] Tong, H. (1990). Nonlinear Time-series: A Dynamical Systems Approach. New York: Oxford 
University Press. 

[122] Tong, H., and Lim, K. (1980). "Threshold Autoregression, Limit Cycles and Cyclical Data" (with 
discussion). Journal of the Royal Statistical Society, B42: 245-292. 

[123] Tsay, R. (1986). "Non-linearity Tests for Time Series". Biometrika, 73: 461-466. 

[124] Tsay, R. (1989). "Testing and Modeling Threshold Autoregressive Processes". Journal of the Amer­
ican Statistical Association, 84: 231-240. 

[125] Tukey, J. (1958). "Bias and Confidence in Not-Quite Large Samples" (abstract). The Annals of 
Mathematical Statistics, 29: 614. 

[126] Volterra, V. (1930). Theory of Functional and of Integral and Integro-differential Equations. Lon­
don, Glasgow, Blackie Sc Son Limited. 

[127] Weiss, A. (1984). "ARMA Models with ARCH Errors". Journal of Time Series Analysis, 5: 129-
143. 

[128] Weiss, A. (1986). "ARCH and Bilinear Time Series Models: Comparison and Combination". Jour­
nal of Business and Economic Statistics, 4: 59-70. 

[129] White, H. (1989). "Some Asymptotic Results for Learning in Single Hidden-layer Feedforward 
Network Models". Journal of the American Statistical Association, 84, no. 408, 1003-1013. 

[130] White, H. (1989). "An Additional Hidden Unit Test for Neglected Nonlinearity in Multilayer 
Feedforward Networks". Proceedings of the International Joint Conference On Neural Networks 
(IEEE Press, New York) Vol II: 451-455. 

[131] Wold, H. (1938). A Study in the Analysis of Stationary Time Series. Almquist Sc Wiskell, Uppsala. 



www.manaraa.com

113 

ACKNOWLEDGMENTS 

Along the journey of writing this dissertation, I am very luck to get guidance, help and love from 

many people. Without them, I could not be able to finish the dissertation. 

First, I would like to thank my father. He suggested me to choose economics as my major when I 

graduated from high school. This is the first stepping stone for the dissertation. 

Second, I would like to thank my major professor, Dr. Barry Falk. He has a very busy schedule of 

teaching, research and advising. Yet, as just one of his many advisees, I have never been feeling neglected 

for one moment. From the topic to the wording, from the theory to the programming, he is always there 

to help me. His academic guidance and working attitude will affect me far beyond this dissertation. 

Third, I would like to give many thanks to people who helped me during my difficult time. Dr. 

Enders, Dr. Carriquiry, Dr. Bunzel, Dr. Breidt, Or. Herriges, Dr. Mattila, Dr. Yang and Julie, Danette, 

Diana, my classmates and friends, sorry I can not complete all of them here. These thanks should be 

sent out long time ago, but the appreciations are so enormous that I did not know how to express them 

appropriately then. I am blessed that my individual trajectory crosses with theirs. Without their love 

and encouragement, I could not come so far. 

Last but not the least, I would like to thank my husband, Jiwu Sun. Five years ago, we got married 

and came to US to study. Since then, no matter what comes out of the life, happiness or joy, sadness or 

sorrow, I know I have a person I can always rely on. Without his support, I can hardly imagine I could 

finish the dissertation. 


	2002
	Testing for nonlinearities in time series with an application to exchange rates
	Yan Zhang
	Recommended Citation


	tmp.1410195246.pdf.M_QZQ

